Sur les transformées de Fourier et de Laplace

Les exercices ci-dessous constituent un entraînement à l'épreuve écrite d'analyse et probabilités. Ils peuvent également servir d'illustrations/applications pour les leçons :

- Espaces de fonctions. Exemples et applications.
- Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.
- Espaces L^p pour $1 \le p \le +\infty$.
- Fonctions définies par une intégrale dép. d'un paramètre. Exemples et applications. (I)
- Transformation de Fourier, produit de convolution. Applications. (I)
- Utilisation en proba. de la transfo. de Fourier ou de Laplace et du produit de convolution.

Transformée de Fourier et résolution d'EDP

Pour des rappels de bases concernant la notion de transformée de Fourier, on pourra par exemple consulter les ouvrages [Rud95, Laa01].

Exercice 1 Résolution de l'équation de la chaleur ([Laa01] p. 264) On souhaite résoudre l'équation de la chaleur :

$$\begin{cases} \partial_t u(t,x) = \frac{1}{2} \partial_{xx}^2 u(t,x) & \text{pour } x \in \mathbb{R} \text{ et } t > 0, \\ u(0,x) = u_0(x) & \text{pour } x \in \mathbb{R}, \end{cases}$$
 (1)

où u_0 est une fonction intégrable donnée. On va chercher à résoudre l'équation en supposant que "tout est permis" puis on contrôlera *a posteriori* que tous les calculs sont licites. On suppose ainsi qu'il existe une fonction u solution de (1) telle que, pour tout t>0 fixé,

$$\int_{\mathbb{R}} |u(t,x)| \, dx < +\infty, \quad \int_{\mathbb{R}} \left| \frac{\partial u}{\partial t}(t,x) \right| \, dx < +\infty, \quad \int_{\mathbb{R}} \left| \frac{\partial^2 u}{\partial x^2}(t,x) \right| \, dx < +\infty.$$

On suppose de plus que pour tout t > 0, on a

$$\int_{\mathbb{R}} \frac{\partial u}{\partial t}(t,x) e^{-itx} \, dx = \frac{\partial}{\partial t} \int_{\mathbb{R}} u(t,x) e^{-itx} \, dx.$$

Considérons alors sa transformée de Fourier (en x) :

$$\hat{u}(t,y) := \int u(t,x)e^{-ixy} \, \frac{dx}{\sqrt{2\pi}}.$$

- 1. Montrer que $\widehat{\partial_x u}(y) = iy\hat{u}(y)$ et $\widehat{\partial_{xx}^2 u}(y) = -y^2\hat{u}(y)$.
- 2. Montrer que, pour tout $y \in \mathbb{R}$, la fonction $t \mapsto \hat{u}(t,y)$ est solution de

$$\partial_t \hat{u}(t,y) = -\frac{1}{2}y^2 \hat{u}(t,y).$$

3. En déduire que

$$\forall t > 0, \ \forall y \in \mathbb{R}, \quad \hat{u}(t, y) = \hat{u}_0(y)e^{-y^2t/2}.$$

- 4. Calculer la transformée de Fourier de la fonction $p_t(x) = e^{-x^2/(2t)}/\sqrt{t}$. On peut se souvenir que si Y suit la loi $\mathcal{N}(0,1)$, alors $\mathbb{E}(e^{itY}) = e^{t^2/2}$.
- 5. En déduire que $\forall t > 0, x \in \mathbb{R}$:

$$u(t,x) = u_0 * p_t(x) / \sqrt{2\pi} = \frac{1}{\sqrt{2\pi}} \int u_0(z) p_t(z-x) dx = \mathbb{E}(u_0(x+\sqrt{t}Y)),$$

où Y suit la loi $\mathcal{N}(0,1)$.

6. Vérifier que la solution trouvée u satisfait toutes les hypothèses qui précèdent la première question.

Exercice 2 Résolution de l'équation des cordes vibrantes ([Laa01] p. 267) On considère l'équation des cordes vibrantes :

$$\begin{cases} \partial_{tt}^{2} u(t,x) - a^{2} \partial_{xx}^{2} u(t,x) = 0 & \text{pour } x \in \mathbb{R} \text{ et } t > 0, \\ u(0,x) = f(x) & \text{pour } x \in \mathbb{R}, \\ \partial_{t} u(0,x)) = g(x) & \text{pour } x \in \mathbb{R}. \end{cases}$$
(2)

On suppose d'une part que $f \in C^2(\mathbb{R}) \cap \mathbb{L}^1(\mathbb{R})$ et que f' et f'' sont intégrables, et d'autre part que $g \in C^1(\mathbb{R}) \cap \mathbb{L}^1(\mathbb{R})$ et que g' est intégrable. En suivant la même méthode que dans l'exercice précédent, exhiber une solution u(t,x) du système ci-dessus telle que u et ses deux premières dérivées par rapport aux variables t et x soient intégrables.

Transformée de Fourier et principe d'incertitude

Exercice 3 L'inégalité de Heisenberg, [Laa01]

On se propose de montrer (en partie) le résultat suivant qui a une certaine importance, voire une importance certaine en mécanique quantique...

Théorème 1 Soit $f \in \mathbb{L}^2 := \mathbb{L}^2_{\mathbb{C}}(\mathbb{R}, dx), f \neq 0$, telle que $xf(x) \in \mathbb{L}^2$ et $\xi \hat{f}(\xi) \in \mathbb{L}^2$. On pose

$$\bar{x}_f := \frac{1}{||f||_2^2} \int_{\mathbb{R}} x |f|^2(x) dx, \quad \bar{\xi}_f := \frac{1}{||\hat{f}||_2^2} \int_{\mathbb{R}} \xi |\hat{f}|^2(\xi) d\xi,$$

et

$$\Delta_f := \left(\frac{1}{||f||_2^2} \int_{\mathbb{R}} (x - \bar{x}_f)^2 |f|^2 (x) dx\right)^{1/2}, \quad \Delta_{\hat{f}} := \left(\frac{1}{||\hat{f}||_2^2} \int_{\mathbb{R}} (\xi - \bar{\xi}_f)^2 |\hat{f}|^2 (\xi) d\xi\right)^{1/2}.$$

Alors

$$\Delta_f \Delta_{\hat{f}} \ge \frac{1}{2},\tag{3}$$

avec égalité si et seulement il existe $\phi, m \in \mathbb{R}$, $\sigma \in \mathbb{R}^*$, $\alpha \in \mathbb{C}^*$ tel que

$$f(x) = \alpha e^{i\phi x} e^{-\frac{(x-m)^2}{2\sigma^2}}.$$

- 1. Déterminer \bar{x}_g , $\bar{\xi}_g$, Δ_g , $\Delta_{\hat{g}}$ en fonction des quantités correspondantes pour f lorsque
 - (a) $g = \lambda f$, avec $\lambda \in \mathbb{C}^*$;
 - (b) $g(x) = f(\lambda x)$, avec $\lambda \in \mathbb{R}^*$;
 - (c) $g(x) = \tau_h f$, avec $h \in \mathbb{R}^*$;
 - (d) $g(x) = e^{i\phi x} f(x)$, avec $\phi \in \mathbb{R}$.
- 2. Montrer que pour obtenir l'inégalité (3), il suffit de montrer que pour toute fonction f satisfaisant aux hypothèses, on a :

$$||xf||_2^2||\xi\hat{f}||_2^2 \ge \frac{1}{4}||f||_2^2||\hat{f}||_2^2. \tag{4}$$

Indication : on pourra regarder $\tilde{f} = e^{i\phi x} \tau_h f$ pour ϕ et h bien choisis.

3. En intégrant par parties, montrer que l'inégalité (4) est vraie pour toute fonction f de l'espace de Schwartz S.

Indication : on pourra dériver $f\bar{f}$, intégrer 1, et utiliser l'inégalité de Cauchy-Schwarz.

Le cas général où $f \in \mathbb{L}^2$ peut être obtenu en décomposant f sur une base hilbertienne bien choisie, par exemple la base des polynômes d'Hermite (voir exercice 10).

Exercice 4 Une inégalité d'incertitude récente (J. Bourgain, 2007)

Dans cet exercice, on définit la transformée de Fourier via la formule :

$$\hat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{2\pi ix\xi} dx.$$

1. Réécrire la transformée de Fourier d'une gaussienne et la formule d'inversion avec cette convention.

Soient f et \hat{f} deux fonctions dans $\mathbb{L}^1(\mathbb{R})$ telles que

 $a.\ \hat{f}\ \text{est la transformée de Fourier de }f,\quad c.\ \hat{f}(x)\geq 0\ \text{pour }|x|\geq a>0\ \text{et }\hat{f}(0)\leq 0,$

b. f et \hat{f} sont paires et réelles, $d. \ \hat{f}(\xi) \ge 0 \text{ pour } |\xi| \ge \hat{a} > 0 \text{ et } \hat{f}(0) \le 0.$

Il s'agit de montrer que dans ces conditions, le produit $a\hat{a}$ est minoré par une constante absolue strictement positive.

- 2. Pourquoi la condition b. est-elle contenue dans les conditions c. et d.?
- 3. Montrer que l'on peut supposer que $a=\hat{a}$ et que l'on peut se limiter aux fonction f qui sont égales à leur transformées de Fourier.

Indication : on pourra consiérer $g = f + \hat{f}$.

- 4. Montrer que l'on peut supposer que $||f||_{\mathbb{L}^1} = 1$ et f(0) = 0. Indication : on peut toujours ajouter une gausienne, laquelle?
- 5. Sous ces conditions, que vaut $\int_{\mathbb{R}} f(x)dx$? Montrer qu'alors $\int f^+ = \int f^- = 1/2$.
- 6. En déduire que $\int_{|x|>a}|f|\leq 1/2$ et $\int_{|x|< a}|f|\geq 1/2.$
- 7. Montrer que sup $|f| \leq 1$, en déduire une minoration de a et conclure.
- 8. On peut poser le même problème dans \mathbb{R}^n . Établir une minoration de a dépendant de n en suivant la même méthode.

La transformée de Laplace d'une mesure

Pour des rappels de base concernant la notion de transformée de Laplace, on pourra se référer par exemple à [DCD82]. Soit μ une mesure de probabilité sur $\mathbb R$ muni de sa tribu borélienne. On lui associe sa transformée de Laplace L définie pour $t \in \mathbb R$ par :

$$L(t) := \int_{\mathbb{R}^d} e^{tx} \, \mu(dx).$$

Exercice 5 Transformées de Laplace usuelles

Déterminer L lorsque μ est

1. la mesure gaussienne $\mathcal{N}(0,1)$ de densité

$$x \mapsto \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right),$$

2. la mesure gaussienne $\mathcal{N}(m, \sigma^2)$ de densité

$$x \mapsto \frac{1}{\sqrt{2\pi\sigma^2}} \exp{\left(-\frac{(x-m)^2}{2\sigma^2}\right)},$$

3. la mesure exponentielle de densité

$$x \mapsto \lambda e^{-\lambda x} \mathbf{1}_{\{x>0\}},$$

4. la mesure de Cauchy de densité

$$x \mapsto \frac{1}{\pi} \frac{1}{1 + x^2},$$

5. la mesure de Poisson

$$\mu = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} \delta_k,$$

6. la mesure binomiale

$$\mu = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} \delta_k.$$

Exercice 6 Quelques propriétés de la transformée de Laplace

Voici quelques propriétés classiques de la transformée de Laplace L.

- 1. Montrer que L est convexe. Que dire de son domaine de définition?
- 2. Quel lien existe-t-il entre la régularité de L en 0 et les propriétés de μ ?
- 3. Montrer que L est log-convexe (i.e. $\log L$ est une fonction convexe).
- 4. Que dire de la transformée de Laplace de $\mu * \nu$?

Exercice 7 Inégalité de Chernov

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires centrées, indépendantes et identiquement distribuées de loi μ et de transformée de Laplace L définie sur intervalle d'intérieur non vide.

1. Montrer que, pour tout r > 0,

$$\mathbb{P}\left(\frac{1}{n}\sum_{k=1}^{n}X_{k} \ge r\right) \le \exp\left(-n\sup_{\lambda>0}(r\lambda - \log L(\lambda))\right).$$

2. Que donne cette majoration pour la mesure gaussienne? la mesure exponentielle? la loi de Poisson?

Autour du semi-groupe d'Ornstein-Uhlenbeck

Tout ce qui concerne le semi-groupe d'Ornstein-Uhlenbeck se trouve dans les dix premières pages de [Bak94]. Soit \mathcal{A} l'ensemble des fonctions de classe $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$ à dérivées à croissance lente. Une fonction f est dite à croissance lente s'il existe un polynôme P tel que $|f| \leq P$. Dans toute la section, les fonctions considérées seront supposées appartenir à l'ensemble \mathcal{A} .

Définition 1 Le semi-groupe d'Ornstein-Uhlenbeck sur \mathbb{R} est la famille $(N_t)_{t\geq 0}$ d'opérateurs agissant sur les fonctions f de \mathcal{A} par :

$$N_t(f)(x) \stackrel{\text{def.}}{=} \int_{\mathbb{R}} f\left(e^{-t}x + \sqrt{1 - e^{-2t}}y\right) \gamma(dy),$$

où γ désigne la mesure gaussienne standard sur $\mathbb R$:

$$\gamma(dy) = e^{-y^2/2} \frac{dy}{\sqrt{2\pi}}.$$

Pour simplifier les expressions, on pourra poser

$$c_t \stackrel{\text{def.}}{=} e^{-t}$$
 et $d_t \stackrel{\text{def.}}{=} \sqrt{1 - e^{-2t}}$.

Exercice 8 Propriété de semi-groupe et générateur infinitésimal Montrer que la famille $(N_t)_{t>0}$ vérifie les propriétés suivantes :

- 1. pour tout $t \geq 0$ et toute fonction $f \in \mathcal{A}$, $P_t(f) \in \mathcal{A}$,
- 2. pour tout $t \ge 0, N_t \mathbf{1}(x) = 1$,
- 3. pour tous $t \geq 0$ et $f \in \mathcal{A}$, $f \geq 0$ entraı̂ne $N_t f \geq 0$,
- 4. pour toute fonction $f \in \mathcal{A}$, $N_0 f = f$,
- 5. pour tous $s, t \geq 0$ et $f \in \mathcal{A}$, $N_t N_s f(x) = N_{t+s} f(x)$.
- 6. Montrer que

$$\lim_{t \to 0} \frac{1}{t} (N_t f - f)(x) = f''(x) - xf'(x).$$

L'opérateur A défini sur A par

$$Af(x) := f''(x) - xf'(x)$$

sera appelé générateur infinitésimal du semi-groupe d'Ornstein-Uhlenbeck.

7. Montrer que

$$\partial_t N_t f = A(N_t f) = N_t(Af).$$

Remarque 1 Cette propriété est très importante car elle montre en particulier que, pour f_0 dans \mathcal{A} , la fonction f définie sur $[0,+\infty[\times\mathbb{R} \ par \ f(t,x)\stackrel{def.}{=} N_t f_0(x)]$ est solution de l'équation aux dérivées partielles suivante :

$$\begin{cases} \partial_t f(t,x) = A f(t,x) = \partial_{xx}^2 f(t,x) - x \partial_x f(t,x) & pour (t,x) \in]0, +\infty[\times \mathbb{R}, f(t,x)] = f_0(x). \end{cases}$$

Exercice 9 Invariance, symétrie et contraction

On se propose de montrer ici que le semi-groupe N_t défini dans l'exercice précédent est auto-adjoint dans $L^2(\gamma)$, continu de $L^p(\gamma)$ dans lui-même et peut-être un peu plus...

1. Montrer que la mesure gaussienne centrée réduite γ est invariante pour le semi-groupe d'Ornstein-Uhlenbeck, c'est-à-dire que pour toute fonction $f \in \mathcal{A}$,

$$\int Af(x)\,\gamma(dx) = 0,$$

ou, de manière équivalente, pour tout $t \geq 0$,

$$\int N_t f(x) \gamma(dx) = \int f(x) \gamma(dx).$$

2. Montrer de plus que le semi-groupe d'Ornstein-Uhlenbeck est symétrique pour la mesure γ c'est-à-dire que pour toutes fonctions $f, g \in \mathcal{A}$,

$$\int N_t f(x)g(x) \, \gamma(dx) = \int f(x)N_t g(x) \, \gamma(dx),$$

ou, de manière équivalente,

$$\int Af(x)g(x)\,\gamma(dx) = \int f(x)Ag(x)\,\gamma(dx) = -\int f'(x)g'(x)\,\gamma(dx). \tag{5}$$

On pourra montrer que l'expression $\int N_t f(x)g(x) \gamma(dx)$ est symétrique en f et g.

- 3. Montrer que la propriété de symétrie est plus forte que celle d'invariance.
- 4. Montrer que pour tout $t \geq 0$ et tout $p \in [1, +\infty]$, N_t est une contraction de $L^p(\gamma)$ dans lui-même, c'est-à-dire que

$$\forall f \in L^p(\gamma), \quad \|N_t f\|_p \le \|f\|_p.$$

En déduire la norme de N_t vu comme endomorphisme de $L^p(\gamma)$.

5. Notons $f_{\lambda}: x \mapsto e^{\lambda x}$. Calculer $||f_{\lambda}||_{p}$ et montrer que

$$P_t(f_{\lambda}) = \exp(\lambda^2 (1 - e^{-2t})/2) f_{\lambda e^{-t}}.$$

En déduire que P_t n'est pas continu de L^p dans L^q pour $q > 1 + e^{2t}(p-1)$.

Remarque 2 La propriété de contraction dans $L^p(\gamma)$ n'est pas propre au processus d'Ornstein-Uhlenbeck. Seul importe ici que le noyau soit une probabilité. On peut par contre montrer le résultat bien plus fort suivant : soit $1 , <math>N_t$ est une contraction de $L^p(\gamma)$ dans $L^q(\gamma)$ si et seulement si

$$q \le 1 + e^{2t}(p-1).$$

Définition 2 Les polynômes de Hermite, que nous noterons $(H_n)_n$, peuvent être définis à partir de leur série génératrice :

$$G(s,x) = \exp(sx - s^2/2) = \sum_{n=0}^{\infty} \frac{s^n}{n!} H_n(x),$$

c'est-à-dire que $H_n(x) = \partial_s^n G(s,x)_{|s=0}$

Exercice 10 Orthogonalité et décomposition du semi-groupe d'Ornstein-Uhlenbeck Le but de cet exercice est de montrer que les polynômes de Hermite forment une base hilbertienne de $L^2(\gamma)$ mais également une base orthonormée de vecteurs propres pour N_t .

1. Soit $f \in L^2(\gamma)$. On définit la transformée de Laplace de la mesure $\nu = f \gamma$ par

$$L_f(\lambda) = \int f(x)e^{\lambda x} \gamma(dx).$$

Montrer que L_f est finie sur \mathbb{R} .

- 2. Supposons que f est orthogonale à tous les polynômes. En considérant son développement en série entière au voisinage de 0, montrer que L_f est nulle. Qu'en est-il de f?
- 3. En déduire que les polynômes forment un sous-espace dense de $L^2(\gamma)$.
- 4. Montrer que la transformée de Laplace de γ vaut $e^{\lambda^2/2}$.
- 5. Soient $s,t\in\mathbb{R}$ fixés. Appliquer N_t à la fonction $x\mapsto G(s,x)$. En déduire

$$N_t(G(s,\cdot))(x) = G(se^{-t}, x).$$

6. Montrer que pour tout t > 0 et tout $n \in \mathbb{N}$,

$$N_t(H_n)(x) = e^{-nt}H_n(x).$$

On dit que le polynôme de Hermite H_n est vecteur propre de N_t , de valeur propre e^{-nt} .

7. En déduire (en utilisant également la symétrie de N_t par rapport à γ) que, pour tous entiers m et n et tout t > 0,

$$e^{-mt} \int H_m H_n \, d\gamma = e^{-nt} \int H_m H_n \, d\gamma.$$

En déduire que les polynômes de Hermite sont orthogonaux dans $L^2(\gamma)$.

- 8. Calculer $\int G(s,x)^2 \gamma(dx)$ de deux façons différentes. En déduire que les polynômes $(H_n/\sqrt{n!})_{n\in\mathbb{N}}$ forment une base hilbertienne de $L^2(\gamma)$.
- 9. Quelles sont les valeurs propres de N_t ? Quelles sont les multiplicités de ces valeurs propres et leurs sous-espaces propres ?
- 10. Même question pour A.

Jürgen Angst

Page web: http://perso.univ-rennes1.fr/jurgen.angst/

Courriel: jurgen.angst@univ-rennes1.fr

Références

- [Bak94] D. BAKRY « L'hypercontractivité et son utilisation en théorie des semigroupes », Lectures on probability theory (Saint-Flour, 1992), Lecture Notes in Math., vol. 1581, Springer, Berlin, 1994, p. 1–114.
- [DCD82] D. DACUNHA-CASTELLE et M. DUFLO *Probabilités et statistiques. Tome 1*, Masson, Paris, 1982, Problèmes à temps fixe.
- [Laa01] E. Laamri Mesures, intégration, convolution, et transformée de Fourier des fonctions, Dunod, 2001.
- [Rud95] W. Rudin Analyse réelle et complexe, Masson, 1995.