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Abstract. — The purpose of this note is to show that the well known criterion for a complex
number to be constructible with straight edge and compass can be established without any use
of Galois theory.

Throughout this note, we identify the field C of complex numbers with the real
plane R2. For distinct points a, b ∈ C, we denote by (ab) the line passing through a
and b and by C (a, b) the circle with center a passing through b.

Let S be a subset of C containing 0 and 1. We say that a complex number z is ele-
mentarily constructible (understated, with straight edge and compass) from S if there
are points a, b, a′, b′ in S such that one of the following assertions hold:

– the lines (ab) and (a′b′) are not parallel and meet in z;
– the circle C (a, b) and the line (a′b′) meet in z;
– the circles C (a, b) and C (a′, b′) meet in z.

We say that a complex number z is constructible (understated, with straight edge
and compass) from S if there are points z1, . . . , zn = z such that, for any integer i with
1 6 i 6 n, zi is elementarily constructible from S ∪ {z1, . . . , zi−1}.

We say finally that a complex number z is constructible if it is constructible
from {0,1}.

The basic construction of a line parallel to a given one, and passing through a given
point, together with Thales’s Theorem imply easily that if z, z ′ are constructible num-
bers (from a subset S), then so are z + z ′, z − z ′, zz ′ and, if z ′ 6= 0, z/z ′. Similarly, by
drawing lines passing through a point and perpendicular to the coordinate axes, we
see that a complex number is constructible if and only if its real and imaginary parts
are constructible. The absolute value of a constructible number is constructible.

Let z be a constructible positive real number and let us draw three points B, H , C
on a line, in that order, at distances BH = 1 and HC = z. Let the perpendicular to BC
through H and the circle with diameter BC meet in two points, say A and A′. Then,
one has AH =p

z, which shows that the square root of a positive real number is con-
structible. Writing down the equations for the real and imaginary parts of the square
roots of a complex number, it appears that the square roots of a constructible complex
number are still constructible.

Writing down the equations defining the line/line, line/circle and circle/circle inter-
sections, it appears that if a complex number z is elementarily constructible from S,
then it satisfies a polynomial equation of degree 6 2 whose coefficients lie in the field
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generated by S. Conversely, the solutions of such an equation can be expressed using
only one square root. Referring to standard texts on basic algebra or field theory for
more details, the preceding considerations imply the following theorem.

Theorem 1. — A complex number z is constructible if and only if there exists a sequence
of subfields Q = F0, . . . ,Fn such that z ∈ Fn and such that for any i ∈ {1, . . . , n}, Fi is a
quadratic extension of Fi−1.

Remark 1.1. — Let S be a subset of C containing {0,1}. The set of complex numbers
wich are constructible from S is the smallest subfield F of C containing S such that F is
stable under taking square roots.

The following corollaries use basic definitions from field theory, namely that of a
finite extension, as well as the multiplicativity of degrees. For these, we also refer to
basic texts on algebra.

Corollary 1.2. — If a complex number z is constructible, then it is an algebraic number
and its degree is a power of 2.

Proof. — With the notations of Theorem 1, Fn is a finite extension of Q of degree 2n ,
in particular an algebraic extension. Since z ∈ Fn , it is an algebraic number. Moreover,
Q(z) is a sub-extension of Fn whose degree is precisely the degree of z. By multiplica-
tivity of degrees, the degree of z divides 2n , hence is a power of 2.

Corollary 1.3. — If a complex number z is constructible, then all of its conjugates are
constructible too.

Proof. — Let z ′ be a conjugate of z in C. There exists a unique field homomorphism
f0 : Q(z) → C such that f0(z) = z ′. We may extend it inductively to a field homomor-
phism fn : Fn → C. Considering the sequence of fields ( fn(Fi )), we see that z ′ is con-
structible.

Corollary 1.4. — If a complex number z is constructible, the field generated by its con-
jugates is a finite extension of Q whose degree is a power of 2.

Proof. — Let z be a constructible complex numbers, with conjugates z1, . . . , zd , where
d is the degree of z. The field generated by the zi is the compositum of all fields Q(zi )
in C. Its degree divides the product of all the degrees [Q(zi ) : Q]. It is therefore a power
of 2.

The last corollary allows to show that the converse of Cor. 1.2 does not hold. There
are polynomials P ∈ Q[X ] of degree 4, irreducible over Q, whose cubic resolvant Q is still
irreducible over Q; one may for example take P = X 4 −X −1. The field FP generated by
the complex roots of P will contain the roots of Q, each of which generates an extension
of degree 3 of Q. Consequently, the degree of FP is a multiple of 3, hence is not a power
of 2.

However, it is well known that the converse to Cor. 1.4 actually holds, giving rise to a
necessary and sufficient criterion for a complex number to be constructible:
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Theorem 2. — A complex number is constructible if and only if it is algebraic and the
field generated by its conjugates is a finite extension of Q whose degree is a power of 2.

The remaining part is usually proved using Galois theory. The following proof is
however more elementary. It is inspired by a classical proof of the (so called) Funda-
mental theorem of algebra, see, e.g., [2]. It appears as an Exercise in [1].

Proof. — Let z be an algebraic number, of degree d, with conjugates z1, . . . , zd . Let us
assume that the field F = Q(z1, . . . , zd ) is an extension of Q of degree a power of 2. Since
this field contains Q(z1), whose degree is d, this already implies that d is a power of 2.
We shall now argue by induction on d.

Let c ∈ Q. For 1 6 i < j 6 d, let us set zi , j ,c = zi + z j + czi z j and let Qc be the poly-
nomial

∏
i< j (X − zi , j ,c ). The coefficients of Qc are symmetric polynomial functions of

the zi , with coefficients in Q; therefore, they are polynomial functions in the coeffi-
cients of the minimal polynomial of z1, hence belong to Q. Any root of Qc generates an
extension of Q contained in F ; its degree must therefore be a power of 2. Consquently,
the degrees d1, . . . , de , of the irreducible factors Qc,1, . . . ,Qc,e of Qc are powers of 2.

One has d1 +·· ·+de = 1
2 d(d −1). Necessarily, one of the degrees, say ds divides d/2.

The roots of Qc,s are of the form zi , j ,c ; their degree is a power of 2 dividing d/2 and
they generate a subfield of F , so that its degree is also a power of 2. We now apply the
induction hypothesis to some zi , j ,c , so that there exist integers i , j with 1 6 i < j 6 d
such that zi , j ,c is constructible.

Up to now, the rational number c was fixed, but what precedes holds for any c. Since
the field of rational numbers is infinite, but there are only finitely many couples (i , j ),
there are two distinct rational numbers c and c ′, and a couple (i , j ) as above, such that
zi , j ,c and zi , j ,c ′ are both constructible.

Since the constructible numbers form a field, it follows that zi + z j and zi z j are con-
structible. Then, zi and z j , being the roots of the quadratic polynomial (X − zi )(X − z j )
with constructible coefficients, are constructible too (Theorem 1).

Since z1, . . . , zd are conjugates of zi , Corollary 1.3 implies that they are all con-
structible, as was to be shown.
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