Décomposition de Bruhat

Soient k un corps, $n \ge 1$ un entier, et $\operatorname{GL}_n(k)$ le groupe linéaire. Le théorème de décomposition dont il est question s'énonce ainsi : pour toute matrice carrée $A \in \operatorname{GL}_n(k)$, il existe une permutation σ , une matrice unipotente supérieure U et une matrice triangulaire supérieure T telles que $A = UM_{\sigma}T$ (où M_{σ} est la matrice de permutation associée à σ), et de plus la permutation σ est unique. Rappelons qu'une matrice unipotente supérieure est une matrice triangulaire supérieure dont les coefficients diagonaux sont tous égaux à 1.

Nous allons établir ce résultat comme conséquence d'un énoncé plus géométrique d'algèbre linéaire. Notons E un espace vectoriel de dimension n sur k. On appelle drapeau (complet) de E une suite strictement croissante de sous-espaces vectoriels $F_0 \subsetneq \cdots \subsetneq F_n$. On notera simplement F un tel drapeau; observez que $\dim(F_i) = i$ pour tout i.

Théorème. Soient F et G deux drapeaux complets de E. Alors il existe une permutation $\sigma \in \mathfrak{S}_n$ et une base ordonnée (e_1, \ldots, e_n) de E telles que $e_i \in F_i \cap G_{\sigma(i)}$ pour tout $i \in \{1, \ldots, n\}$. De plus, la permutation $\sigma_{F,G} := \sigma$ est unique.

Commentaires. (1) Cet énoncé signifie simplement qu'il existe une base de E dont chaque vecteur appartient à l'un des F_i et à l'un des G_j .

(2) L'unicité de $\sigma = \sigma_{F,G}$ implique que $\sigma_{G,F} = \sigma_{F,G}^{-1}$, car si l'on pose $\tau = \sigma^{-1}$ et $e'_j = e_{\tau(j)}$ on a $e'_j \in G_j \cap F_{\tau(j)}$ d'où $\tau = \sigma_{G,F}$. Cependant, la preuve procèdera différemment, en montrant d'abord que $\sigma_{G,F} = \sigma_{F,G}^{-1}$ puis que $\sigma_{F,G}$ est unique.

Preuve. Fixons un entier $i \ge 1$. On observe que si pour un certain $j = j_0 \ge 1$ l'inclusion $F_{i-1} + G_j \subset F_i + G_j$ est une égalité, alors elle l'est encore pour tout $j \ge j_0$ puisque $F_{i-1} + G_j = F_{i-1} + G_{j_0} + G_j = F_i + G_j$. Il s'ensuit que lorsque j croît de 0 à n, cette inclusion qui est stricte pour j = 0 devient une égalité pour un certain $j \ge 1$, puis le reste. Notons $\sigma_{F,G}(i) = j$ cet entier minimal, qui est donc caractérisé par les relations $F_{i-1} + G_{j-1} \subsetneq F_i + G_{j-1}$ et $F_{i-1} + G_j = F_i + G_j$.

Pour montrer que $\sigma_{F,G}$ est une permutation, il suffit de montrer que $\sigma_{G,F} \circ \sigma_{F,G} = \text{id}$. Pour cela, notons $j = \sigma_{F,G}(i)$ et montrons qu'alors $i = \sigma_{G,F}(j)$, c'est-à-dire $F_{i-1} + G_{j-1} \subsetneq F_{i-1} + G_j$ et $F_i + G_{j-1} = F_i + G_j$. Or supposant que $F_{i-1} + G_{j-1} = F_{i-1} + G_j$, on déduit $F_i + G_{j-1} = F_i + G_j = F_{i-1} + G_j = F_{i-1} + G_{j-1}$ ce qui est une contradiction; ceci établit l'inclusion stricte désirée. Par ailleurs, on a :

$$\dim(F_i + G_{j-1}) = \dim(F_{i-1} + G_{j-1}) + 1 = \dim(F_{i-1} + G_j) = \dim(F_i + G_j),$$

ce qui montre que l'inclusion $F_i + G_{j-1} \subset F_i + G_j$ est une égalité.

Pour i et j quelconques, utilisant la formule reliant la somme de deux sous-espaces à leur intersection, on voit que $F_{i-1} + G_j = F_i + G_j$ équivaut à $\dim(F_i \cap G_j) = \dim(F_{i-1} \cap G_j) + 1$. Si $j = \sigma(i)$ avec $\sigma = \sigma_{F,G}$, cette égalité a lieu donc on peut choisir $e_i \in F_i \cap G_{\sigma(i)} \setminus F_{i-1} \cap G_{\sigma(i)}$. En particulier, on a $e_i \in F_i \setminus F_{i-1}$ ce qui montre que (e_1, \ldots, e_n) est une base (ordonnée) de E.

Montrons enfin que $\sigma_{F,G}$ est unique. Supposons qu'il existe une permutation $\varphi \in \mathfrak{S}_n$ et des vecteurs $e_i \in F_i \cap G_{\varphi(i)}$ formant une base de E. Alors $F_i = \text{Vect}(e_1, \ldots, e_i)$ donc $e_i \notin F_{i-1}$. Posant $j = \varphi(i)$, on a donc $\dim(F_i \cap G_j) = \dim(F_{i-1} \cap G_j) + 1$ puis $F_{i-1} + G_j = F_i + G_j$ d'après l'argument

sur la somme et l'intersection utilisé quelques lignes plus haut. Il s'ensuit que $\varphi(i)$ est inférieur ou égal à $\sigma_{F,G}(i)$ tel que celui-ci a été défini en début de preuve. Comme ceci vaut pour tout i et que $\sigma_{F,G}$ est une bijection, ceci implique que $\varphi = \sigma_{F,G}$.

Corollaire 1. Soit X l'ensemble des paires de drapeaux de E, muni de l'action naturelle de G = GL(E) définie par u.(F,G) = (u(F),u(G)). Alors l'application $(F,G) \mapsto \sigma_{F,G}$ passe au quotient en une bijection canonique entre l'ensemble d'orbites X/G et le groupe symétrique \mathfrak{S}_n .

Cet énoncé dit qu'après transport par un automorphisme de E, le drapeau G est obtenu par (unique) permutation des vecteurs d'une base de F. Autrement dit, à automorphisme linéaire et à permutation près, il n'y a qu'un drapeau dans E. Si $E = k^n$, on peut choisir par exemple le drapeau canonique F tel que F_i est engendré par les i premiers vecteurs de la base canonique.

Preuve. Soient $\sigma = \sigma_{F,G}$ et (e_i) une base satisfaisant les conclusions du théorème. On a alors $G_j = \operatorname{Vect}(e_{\sigma^{-1}(1)}, \dots, e_{\sigma^{-1}(j)})$ puisque pour chaque $k \leq j$ le vecteur $e_{\sigma^{-1}(k)}$ appartient à G_k qui est inclus dans G_j , et ces vecteurs sont en nombre $j = \dim(G_j)$. Ainsi G est entièrement déterminé par la base ordonnée (e_i) et la permutation σ . Si l'on fixe une base ordonnée \mathscr{B} de E et qu'on note $u \in \operatorname{GL}(E)$ l'unique automorphisme linéaire qui envoie (e_i) sur \mathscr{B} , on voit que la paire (u(F), u(G)) est entièrement déterminée par σ . Notez qu'on a utilisé la base \mathscr{B} non pas pour définir l'application $X/G \to \mathfrak{S}_n$, qui est donc bien canonique, mais seulement pour vérifier que c'est une bijection. \square

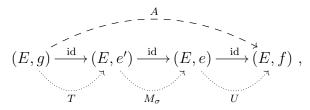
Revenons aux notations de départ pour en déduire la décomposition de Bruhat sous sa forme matricielle. On observera que la preuve du corollaire 2 utilise seulement le théorème, pas le corollaire 1. On rappelle que M_{σ} désigne la matrice de permutation associée à σ .

Corollaire 2. Pour tout $A \in GL_n(k)$, il existe une permutation σ , une matrice U unipotente supérieure et une matrice T triangulaire supérieure, telles que $A = UM_{\sigma}T$. De plus σ est unique.

Preuve. Notons $f = (f_1, ..., f_n)$ la base (ordonnée) canonique de $E = k^n$ et $g = (g_1, ..., g_n)$ la base (ordonnée) formée par les vecteurs colonnes de la matrice A. Ainsi A n'est autre que la matrice de l'identité exprimée dans les bases g à la source et f au but, c'est-à-dire, en symboles $A = \text{Mat}_{g,f}(\text{id})$.

Soient F, G les deux drapeaux de E définis par $F_i = \text{Vect}(f_1, \ldots, f_i)$ et $G_j = \text{Vect}(g_1, \ldots, g_j)$. Notons $\sigma = \sigma_{F,G}$ et $e = (e_1, \ldots, e_n)$ la base ordonnée fournie par le théorème, qui vérifie $e_i \in F_i \cap G_{\sigma(i)}$. Puisque $e_i \in F_i \setminus F_{i-1}$, lorsqu'on exprime e_i sur la base f sa composante sur f_i est non nulle; quitte à normaliser e_i on peut donc supposer que cette composante est 1. Ceci signifie que la matrice de passage $U = \text{Mat}_{e,f}(\text{id})$ est unipotente supérieure.

Notons maintenant $\tau = \sigma^{-1}$ et $e'_i = e_{\tau(i)}$; clairement la matrice de passage $\operatorname{Mat}_{e',e}(\operatorname{id})$ est la matrice de permutation M_{σ} . Les vecteurs e'_i vérifient $e'_i \in F_{\tau(i)} \cap G_i$ et le raisonnement fait précédemment montre que la matrice de passage $T = \operatorname{Mat}_{g,e'}(\operatorname{id})$ est triangulaire supérieure (mais on ne peut plus normaliser de manière à ce qu'elle soit unipotente, car cela changerait la normalisation de e_i). On conclut en disant que la matrice de l'application composée



écrite dans les bases indiquées, est le produit de matrices $A = UM_{\sigma}T$.