TD: Polynômes

09/01/2013

Échauffement (Polynômes symétriques)

1. Déterminer si les polynômes suivants sont symétriques (pour chaque polynôme, les variables sont celles qui apparaissent):

$$X_1^2 + \dots + X_n^2$$
, $X_1^3 X_2 + X_2^3 X_3 + X_3^3 X_1$, $X_1^2 (X_2 + X_3) + X_2^2 (X_1 + X_3) + X_3^2 (X_1 + X_2)$.

2. Pour ceux qui le sont, les exprimer en fonction des polynômes symétriques élémentaires.

Exercice 1. (Identités de Newton)

Soit $n \geq 1$, on se place dans $A = \mathbf{Z}[X_1, \dots, X_n]$. Pour $d \geq 1$, on note $P_d = X_1^d + \dots + X_n^d$.

- 1. Vérifier que P_d est un polynôme symétrique.
- 2. On veut donner une formule permettant d'exprimer P_d en fonction des polynômes symétriques élémentaires, que l'on note S_1, \ldots, S_n . Soit F(T) = $\prod_{i=1}^{n} (1 - TX_i) \in A[T].$
- a) Montrer que F vérifie l'équation différentielle :

$$-\frac{TF'(T)}{F(T)} = \frac{TX_1}{1 - TX_1} + \dots + \frac{TX_n}{1 - TX_n}.$$

b) En utilisant le développement en série formelle de $\frac{1}{1-T}$, en déduire que :

$$F'(T) = -F(T) \left(\sum_{j \ge 1} P_j(X_1, \cdots, X_n) T^{j-1} \right).$$

- c) Donner l'identité correspondante pour le coefficient de T^{d-1} .
- 3. Soit k un corps de caractéristique nulle. On pose $G(T) = \sum_{i \ge 1} \frac{P_i}{i} T^i \in$ $k[X_1,\cdots,X_n,T].$
- a) Montrer que $F(T) = \sum_{i \geq 0} \frac{G(T)^i}{i!}$. b) En déduire que les S_i s'expriment comme des polynômes en les P_i .
- 4. Peut-on donner une formule analogue pour exprimer les P_i en fonction des S_i à partir de la formule reliant F et G?

Exercice 2. (Polynômes antisymétriques)

Soit k un corps de caractéristique nulle, soit $A=k[X_1,\cdots,X_n]$. L'anneau A est muni de l'action naturelle du groupe symétrique \mathfrak{S}_n par permutation des variables. On dit qu'un polynôme $P\in k[X_1,\cdots,X_n]$ est antisymétrique si pour tout $\sigma\in\mathfrak{S}_n$, on a $\sigma P=\varepsilon(\sigma)P$.

1. Soit

$$\Delta = \prod_{1 \le i < j \le n} (X_j - X_i).$$

Montrer que Δ est antisymétrique.

2. Soit $P \in A$, antisymétrique. Montrer que P est divisible par Δ dans A.

Exercice 3. (Un produit scalaire sur les polynômes)

Soit k un corps, soit $A = k[X_1, \dots, X_n]$. Pour $1 \le i \le n$, on définit l'opérateur $\frac{\partial}{\partial X_i}$ sur A. Si $P \in A$, on note $P(\partial)$ le polynôme obtenu en substituant les $\frac{\partial}{\partial X_i}$ aux X_i .

1. Vérifier que la substitution précédente a bien un sens, et que pour $P,Q \in A$, on a la relation :

$$PQ(\partial) = P(\partial) \circ Q(\partial).$$

- 2. Pour $P, Q \in A$, on définit $(P, Q) = P(\partial)(Q)(0, \dots, 0)$.
- a) Montrer que si P et Q sont homogènes de degrés distincts, on a (P,Q)=0.
- b) Montrer que si $P, Q, R \in A$, on a la relation :

$$(PQ, R) = (Q, P(\partial)R).$$

- 3. Si $k = \mathbf{R}$, montrer que (\cdot, \cdot) est un produit scalaire invariant sous l'action du groupe symétrique.
 - 4. Soit Δ comme dans l'exercice 2. Calculer (Δ, Δ) .

Exercice 4. (Résultant)

Soit A un anneau intègre unitaire. Pour $d \in \mathbb{N}$, on note A_d l'ensemble des polynômes de degré $\leq d$ dans A[X]. Soient $P,Q \in A[X]$, de degrés respectifs p,q.

1. On considère l'application linéaire

$$\varphi : \begin{array}{ccc} A_{q-1} \times A_{p-1} & \to & A_{p+q-1} \\ (U,V) & \mapsto & UP + VQ. \end{array}$$

Montrer que P et Q sont premiers entre eux si et seulement si φ est bijective.

- 2. On note $\operatorname{Res}_X(P,Q)$ (appelé résultant en X de P et Q) le déterminant de φ . Montrer que P et Q sont premiers entre eux si et seulement si $\operatorname{Res}(P,Q) \neq 0$.
 - 3. a) Écrire la matrice de φ dans les bases canoniques.
- b) En faisant de judicieuses combinaisons linéaires de colonnes, montrer que $\mathrm{Res}_X(P,Q) \in (P) + (Q)$.
- 4. Soient x, y des nombres algébriques, et soient P, Q des polynômes annulateurs respectifs de x et y.

- a) Montrer que $\operatorname{Res}_X(P(X),Q(x+y-X))=0$. En déduire que x+y est algébrique.
- b) Proposer une construction analogue pour démontrer que xy est algébrique.
- c) Peut-on utiliser cette idée pour démontrer que l'ensemble des entiers algébriques forme un sous-anneau de l'ensemble des nombres algébriques?

Exercice 5. (Théorème de Bezout)

Cet exercice utilise les résultats du précédent. Le but est de montrer que si $P,Q\in k[X,Y]$ n'ont pas de facteur commun, alors les courbes $C_P=\{(x,y)\in k^2 \ /\ P(x,y)=0\}$ et $C_Q=\{(x,y)\in k^2 \ /\ Q(x,y)=0\}$ ont au plus $(\deg P)(\deg Q)$ points d'intersection.

- 1. Calculer un majorant du degré (en X) de $Res_Y(P,Q)$.
- 2. On suppose que P et Q sont premiers entre eux.
- a) Montrer que C_P et C_Q n'ont qu'un nombre fini de points en commun.
- b) Montrer que quitte à faire un changement de variable linéaire, on peut supposer que pour chaque $x \in k$ qui est abscisse d'un point d'intersection de C_P et C_Q , il existe un unique $y \in k$ tel que $(x, y) \in C_p \cap C_Q$.

Exercice 6. (Théorème de Steinitz)

Le but de cet exercice est de démontrer le théorème de Steinitz : soit k un corps, alors il existe une clôture algébrique k^{alg} de k. Rappelons qu'une clôture algébrique de k est une extension algébrique de k qui est algébriquement close.

- 1. Expliquer pour quoi il suffit de démontrer que k admet une extension algébriquement close.
- 2. On considère $R = k[\{X_P \mid P \in k[X]\}]$, l'anneau de polynômes à coefficients dans k dont les variables sont indexées par k[X].
- a) Soit I l'idéal de R engendré par les éléments de la forme $P(X_P)$, pour $P \in k[X]$. Montrer que I est un idéal propre de R. b) En utilisant le théorème de Krull, en déduire qu'il existe une extension L de k telle que pour tout $P \in k[X]$, P admette une racine dans L.
 - 3. En déduire que k admet une clôture algébrique.