4.1.2 Corrigé de la première épreuve écrite

Partie I : Parties dédoublables de $\mathbb{C} = \mathbb{R}^2$

A. Etude d'un premier exemple

1.

- (a) Par hypothèse : $2=|x-y|\leqslant |x|+|-y|\leqslant 1+1=2$, ce qui impose : |x|=|-y|=1, et : $\exists \lambda \in \mathbb{R}_+, -y=\lambda x$ (cas d'égalité de l'inégalité triangulaire d'une norme euclidienne). Ainsi : $\lambda=1$, y=-x puis $\frac{x+y}{2}=0$.
- (b) Par contraposition, supposons $w \in B = \tau(A)$ et écrivons $w = \tau(a)$ avec $a \in A$. $|w \tau(0)| = |\tau(a) \tau(0)| = |a| \le 1$ (τ est une isométrie).
- (c) Par hypothèse, $\tau(0) \in B$. Ainsi $\tau(0) \neq 0$ et on peut considérer le diamètre [u, v] orthogonal à $[0, \tau(0)]$. Par construction : $|u \tau(0)| > 1$ et $|v \tau(0)| > 1$, u et v sont dans A.
- (d) Comme τ est affine elle conserve le milieu et $\tau(0)$ est le milieu de $[\tau(u), \tau(v)]$. Or, $|\tau(u) \tau(v)| = |u v| = 2$, avec : $\tau(u)$ et $\tau(v)$ dans $B = \tau(A) \subset \overline{D}$. Selon le (a), 0 est le milieu du segment $[\tau(u), \tau(v)]$. De là : $\tau(0) = 0 \in B \cap A$, la contradiction suit.

2.

Si \overline{D} est \mathcal{I}_2 -dédoublable, on peut écrire : $\overline{D} = A \coprod B$ avec : $\tau_1(\overline{D}) = A$, $\tau_2(\overline{D}) = B$ (τ_1 , τ_2 sont dans \mathcal{I}_2). On peut toujours supposer que 0 est dans A et on pose alors : $\tau = \tau_2 \circ \tau_1^{-1}$ pour avoir : $\tau \in \mathcal{I}_2$, et $\tau(A) = B$. On sait alors que ces hypothèses mènent à une contradiction.

B. Cas des parties bornées

B 1. Disque enveloppant minimal

1.

- (a) La partie \mathcal{B} étant bornée, il existe $r_0 \ge 0$ tel que : $\mathcal{B} \subset \overline{D}(0, r_0)$ et donc $r_0 \in R$ puisque $0 \in \mathcal{C}_{r_0}$.
- (b) inf $R = \rho < \rho + \frac{1}{n}$; il existe donc r_n dans R tel que : $\rho \leqslant r_n < \rho + \frac{1}{n}$. De là : $C_{r_n} \neq \emptyset$ et il existe x_n dans \mathbb{C} tel que : $\mathcal{B} \subset \overline{D}(x_n, r_n) \subset \overline{D}\left(x_n, \rho + \frac{1}{n}\right)$.

- (a) et (b)
- Grâce au 1.(b), on dispose d'une suite $(x_n)_{n\in\mathbb{N}^*}$ telle que :

(*)
$$\forall n \in \mathbb{N}^*, \forall b \in \mathcal{B}, |x_n - b| \leqslant \rho + \frac{1}{n}$$

- Cette suite complexe est donc clairement bornée $(\mathcal{B} \neq \emptyset)$ et si $(x_{\alpha(n)})_{n \in \mathbb{N}^*}$ est extraite, convergente, de limite notée a, l'énoncé (*) donne immédiatement : $\forall b \in \mathcal{B}, |a-b| \leq \rho$.
- (c) Par l'absurde, soit $a_1 \neq a_2$ vérifiant : $\mathcal{B} \subset \overline{D}(a_1, \rho)$ et $\mathcal{B} \subset \overline{D}(a_2, \rho)$. Clairement (faire un dessin) : $\mathcal{B} \subset \overline{D}(a_1, \rho) \cap \overline{D}(a_2, \rho) \subset \overline{D}(c, r)$ avec : $c = \frac{a_1 + a_2}{2}$, et $r = \sqrt{\rho^2 \frac{|a_1 a_2|^2}{4}} < \rho$. Contradiction.

B 2. Conclusion

1.

Pour \mathcal{I}_2^+ : les translations, les rotations. Pour \mathcal{I}_2^- (isométries indirectes) : les réflexions, les symétries glissées dont la forme réduite est : $s \circ t = t \circ s$ (s : réflexion, t :translation).

2.

- (a) La clef: $\tau_i(\mathcal{B}) = \mathcal{B}_i \subsetneq \mathcal{B}$ pour i = 1, 2. Cela interdit: $\tau_i^2 = Id$ et τ_i ne peut donc pas être une réflexion. On en déduit aussi: $\forall n \in \mathbb{N}^*, \tau_i^n(\mathcal{B}) \subsetneq \mathcal{B}$, avec \mathcal{B} bornée non vide. Il est donc impossible que τ_i soit une translation, même dans le "cas limite" $\tau_i = Id_{\mathbb{C}}$. En conséquence: τ_i ne peut pas être une symétrie glissée. Sinon, lorsque $\tau_i = s \circ t$ est sa forme réduite, on a: $\forall n \in \mathbb{N}^*, \tau_i^{2n}(\mathcal{B}) = t^{2n}(\mathcal{B}) \subset \mathcal{B}$. Bilan: τ_1 et τ_2 ne peuvent être que des rotations différentes de $Id_{\mathbb{C}}$.
- (b) Soit \overline{D} le disque fermé de rayon minimum contenant \mathcal{B} ; on note a son centre et ρ son rayon (confer B.). Pour i fixé, $\mathcal{B} = \tau_i^{-1}(\mathcal{B}_i) \subset \tau_i^{-1}(\overline{D})$. Comme τ_i est une isométrie, $\tau_i^{-1}(\overline{D})$ est un disque fermé de rayon ρ (et de centre $\tau_i^{-1}(a)$). Par unicité de $\overline{D}:\tau_i^{-1}(\overline{D})=\overline{D}$ et par unicité du centre de $\overline{D}:\tau_i(a)=a$. De là, selon (b), $a=\omega_i$ et donc : $\omega_1=\omega_2$.
- (c) Il en résulte que les rotations τ_i commutent et en particulier : $\tau_2 \circ \tau_1(\mathcal{B}) = \tau_1 \circ \tau_2(\mathcal{B})$. Or, $\tau_2(\tau_1(\mathcal{B})) = \tau_2(\mathcal{B}_1) \subset \tau_2(\mathcal{B}) = \mathcal{B}_2$, et de même : $\tau_1(\tau_2(\mathcal{B})) \subset \mathcal{B}_1$. La contradiction résulte alors des hypothèses : $\mathcal{B} \neq \emptyset$ et $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$. Bilan : aucune partie bornée (non vide) de \mathbb{C} n'est \mathcal{I}_2 -dédoublable.

Partie II : Le paradoxe de SIERPINSKI-MAZURKIEWICZ

1.

Par l'absurde, il existe P, Q dans $\mathcal{P}_{\mathbb{N}}$ tels que : P(u) + 1 = uQ(u). Donc : R(u) = 0 avec : R = 1 + P - XQ dans $\mathbb{Q}[X]$, ce qui contredit le statut de u puisque $R \neq 0$ (R(0) = 1 + P(0) > 0).

2.

Le coefficient constant de P est $\geqslant 1$ ou bien nul, ce qui justifie l'alternative. On pose : $\mathcal{D}_1 = \{(R+1)(u), R \in \mathcal{P}_{\mathbb{N}}\} = t(\mathcal{D})$ et $\mathcal{D}_2 = \{(XS)(u), S \in \mathcal{P}_{\mathbb{N}}\} = s(\mathcal{D})$. L'alternative ci-dessus donne : $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2$ et le 1. donne $\mathcal{D}_1 \cap \mathcal{D}_2 = \emptyset$. Comme s et t sont dans \mathcal{I}_2 , \mathcal{D} est \mathcal{I}_2 -dédoublable.

Partie III : Parties dédoublables de $\mathbb R$

A. La croissance d'un groupe

1

Essentiellement : $B_S(p+q) \subset B_S(p)B_S(q)$ car avec des notations évidentes $s_1 \cdots s_{p+q} = (s_1 \cdots s_p)(s_{p+1} \cdots s_{p+q})$

(a) $u_1 = v_1$, et $u_p = \log \gamma_S(p) \geqslant 0$. Si n = pq + r, $0 \leqslant r < p$, on a: $u_n \leqslant qu_p + u_r \leqslant \frac{n-r}{p} u_p + rv_1 \leqslant nv_p + pv_1.$

(b) A chaque $\varepsilon > 0$ on associe $p_{\varepsilon} \ge 1$ vérifiant $v_{p_{\varepsilon}} < v + \varepsilon$, et aussi $N_{\varepsilon,p_{\varepsilon}} \ge 1$ tel que : $\forall n \ge N, \frac{p_{\varepsilon}}{n} v_1 \leqslant \varepsilon$. Ainsi, pour $n \ge N, v \leqslant v_n \leqslant v + 2\varepsilon$ grâce au (a).

3.

$$c_S(n) = \exp v_n \to \exp v \geqslant 1.$$

4.

La définition montre qu'un groupe contenant un sous-groupe à croissance exponentielle est aussi à croissance exponentielle.

5.

Soit $S = \{s_1, \dots, s_r\}$ une partie finie et symétrique de G. Comme G est abélien, tout élément de $B_S(n)(n \ge 1)$ s'écrit sous la forme : $s_1^{p_1} \cdots s_r^{p_r}$ avec $0 \le p_1 + \cdots + p_r \le n$ et $p_k \ge 0$. Donc, de façon très grossière, $\gamma_S(n) \le (n+1)^r$ et $C_S = 1$.

B. La croissance du groupe \mathcal{I}_1

1.

Les applications affines : $s: x \mapsto ux + v$ avec u et v réels. Les isométries affines sont donc obtenues avec $u = \pm 1$, et les isométries directes avec u = 1.

2.

Il suffit de choisir $\varepsilon' = \pm Id$ de façon à avoir : $\varepsilon \circ s \circ \varepsilon' := t \in \mathcal{I}_1^+$. Avec les notations ci-dessus, $\varepsilon' = u\varepsilon$ s'impose clairement. Remarque : un tel couple (ε', t) est unique.

3.

Soit τ dans $B_S(n)$, $\tau = s_1 \circ \cdots \circ s_r$ avec $r \leqslant n$, $s_k \in S$. Selon le 2., on peut écrire : $s_1 = t_1 \circ \varepsilon_1'$; $\varepsilon_1' \circ s_2 = t_2 \circ \varepsilon_2'$; \cdots ; $\varepsilon_{r-1}' \circ s_r = t_r \circ \varepsilon_r'$ (avec des notations évidentes). De là : $\tau = t_1 \circ \cdots \circ t_r \circ \varepsilon_r'$. Finalement, $\sigma = t_1 \circ \cdots t_r$ et $\varepsilon = \varepsilon_r'$ convienment puisque les t_k sont dans T.

4.

Selon 3., $B_S(n) \subset B_T(n) \circ \{\pm Id\}$, donc $\gamma_S(n) \leqslant 2\gamma_T(n)$ et $C_S \leqslant C_T$. De plus, $C_T = 1$ puisque \mathcal{I}_1^+ est Abélien. Donc $C_S = 1$ et le résultat suit puisque S est arbitraire.

C. Conclusion

1.

Notons r le plus petit des indices i tels que : $s_i \neq s'_i$. Chaque s_k laisse stable \mathcal{D} et : $s_r(\mathcal{D}) \cap s'_r(\mathcal{D}) \subset \mathcal{D}_1 \cap \mathcal{D}_2 = \emptyset$. De là :

$$s_r(s_{r+1} \circ \cdots \circ s_n(\mathcal{D})) \cap s'_r(s'_{r+1} \circ \cdots \circ s'_n(\mathcal{D})) = \emptyset.$$

Or, pour i < r, $s_i = s_i'$ et on a affaire à des bijections, de sorte que : $\gamma_s(\mathcal{D}) \cap \gamma_{s'}(\mathcal{D}) = \emptyset$.

2.

Selon le 1., pour $s \neq s'$ on a $\gamma_s \neq \gamma_{s'}$. On vient donc de construire 2^n éléments distincts de $B_S(n)$ et donc $\gamma_S(n) \geq 2^n$, soit : $C_S \geq 2$.

3.

Supposer l'existence d'une partie \mathcal{I}_1 -dédoublable de \mathbb{R} permet donc de contredire le caractère sous-exponentiel de la croissance de \mathcal{I}_1 ($C_S=1$).

D. Application

On sait qu'il existe une partie \mathcal{D} de \mathbb{C} non-vide et \mathcal{I}_2 -dédoublable (confer II.). En reprenant mutatis mutandis les raisonnements de la section III.C., on dispose d'une partie S de \mathcal{I}_2 pour laquelle $C_S \geqslant 2$. Ainsi, \mathcal{I}_2 est à croissance exponentielle.

Partie IV: Un groupe "paradoxal"

A. Calculs préliminaires

1.

$$A^k = \begin{pmatrix} 1 & 2k \\ 0 & 1 \end{pmatrix}, B^k = \begin{pmatrix} 1 & 0 \\ 2k & 1 \end{pmatrix}$$
 pour k dans \mathbb{Z} .

On se contente de vérifier (1). $M=A^k$ avec $|k|\geqslant 1$; $X_2=\begin{pmatrix}x\\y\end{pmatrix}\in E_2$ avec |x|<|y|. $MX_2=\begin{pmatrix}x+2ky\\y\end{pmatrix}$; $|x+2ky|\geqslant 2|k||y|-|x|>|y|$. $MX_2\in E_1$.

B. Description de Γ

1.

On construit les éléments de Γ comme des "mots" dont les "lettres" sont puisées dans $\Gamma_1 \cup \Gamma_2$. La discussion porte sur le nombre de "lettres" puisées, I étant une "lettre" à part entière. Une "lettre" : I, P_0 , M_0 . Deux "lettres" : les précédents, ainsi que : P_0M_0 , M_1P_1 . Trois "lettres" : les précédents, ainsi que : $P_0(M_1P_1)$, $(M_1P_1)M_2$. Quatre "lettres" : les précédents, ainsi que : $P_0(M_1P_1)M_2$, $(M_1P_1)(M_2P_2)$. On fait ainsi apparaître les huit types annoncés, et aucun nouveau type n'apparaît lorsque la construction se poursuit.

- (a) $P_0M_0=I$ nécessite $M_0=P_0^{-1}$ et donc : $M_0\in \Gamma_1\cap \Gamma_2=\{I\}$ (voir A.1.) ce qui n'est pas.
- (b) Selon A.2., $M_{s+1}E_2 \subset E_1$ et $\Pi_s E_1 \subset E_1$, ainsi : $U_6 E_2 \subset E_1$ ce qui impose $U_6 \neq I$.
- (c) On considère $M_0U_5M_0^{-1}=(M_0P_0)\Pi_rM_0^{-1}$ où $M_0\in \Gamma_1\backslash\{I\}$. Cette matrice est du type U_6 et elle est donc distincte de I, il en résulte : $U_5\neq I$. On considère $M_0U_4M_0^{-1}=((M_0M_1)P_1)\cdots(M_nP_n)M_0^{-1}$ avec $M_0\in \Gamma_1\backslash\{I,M_1^{-1}\}$. Cette matrice est encore du type U_6 , ce qui impose : $U_4\neq I$.
 - (d) On considère : $M_{t+1}U_7M_{t+1}^{-1}=(M_{t+1}P_0)\Pi_t$ qui est du type U_4 . Donc : $U_7\neq I$.

- (a) Par hypothèse : $I = \Pi'_n \Pi_n^{-1} = M'_1 P'_1 \cdots M'_n (P'_n P_n^{-1}) M_n^{-1} \cdots P_1^{-1} M_1^{-1}$. Les matrices M_i , P_i , M'_i , P'_i étant toutes distinctes de I on doit avoir : $P'_n = P_n$ (sinon : $\Pi'_n \Pi_n^{-1}$ est du type U_6). Il faut alors, pour la même raison, que : $M'_n = M_n$, etc \cdots
- (b) Fixons $n \ge 1$ et considérons $\Pi_n = M_1 P_1 \cdots M_n P_n$ avec : $M_i = A^{\pm 1}$, $P_i = B^{\pm 1}$. Par construction : $\Pi_n \in B_S(2n)$ et les Π_n ainsi obtenus (n fixé) sont deux à deux distincts (question précédente). Ainsi, $\gamma_S(2n) \ge 2^{2n}$ et $C_S \ge 2$. Le groupe Γ (et donc aussi $SL_2(\mathbb{Z})$) est à croissance exponentielle.

C. Eléments d'ordre fini de Γ 1.

 U_4^k (resp. U_7^k) est encore du type (4) (resp. du type (7)) et de ce fait on ne peut avoir : $U_4^k = I$ (resp. $U_7^k = I$). $U_3^k \neq I$ si k = 1 et même si $k \geqslant 2$ car alors U_3^k est du type (7).

2.

- (a) $V_1 = M_{s+1}\Pi_s = ((M_{s+1}M_1)P_1)(M_2P_2)\cdots(M_sP_s)$. Si $M_{s+1}M_1 \neq I$, V_1 est du type (4), ce qui interdit $V_1^k = I$ (question précédente) et contredit l'hypothèse. Ainsi $M_{s+1}M_1 = I$. $V_2 = (M_2P_2)\cdots(M_s(P_sP_1))$ (en tenant compte de $M_{s+1}M_s = I$) ce qui impose $P_sP_1 = I$. Sinon, V_2 est du type (4) et $V_2^k \neq I$, puis $V_1^k \neq I$, ce qui n'est pas.
- (b) On vient de décrire une procédure de conjugaison qui permet "d'effacer" la première et la dernière "lettre" d'un "mot" de type U_6 ou U_5 . Précisément, si $s \ge 2$:

type
$$U_6 \longrightarrow \text{type } U_5 \longrightarrow \text{type } U_6$$

$$U = U_6 \qquad V_1 \qquad V_2.$$

En réitérant, on construit un conjugué U' de $U=U_6$ qui est dans $\Gamma_1 \cup \Gamma_2$ et qui est donc d'ordre fini $(U'^k=I)$. De là : U'=I (confer A.1.), puis $U_6=I$, ce qui n'est pas. Autrement dit : U ne peut pas être du type U_6 .

3.

 $W=M_{r+1}^{-1}U_5M_{r+1}$ est du type (6), ce qui interdit $W^k=I$ (question précédente) et interdit aussi : $U_5^k=I$.

4.

L'étude qui précède montre que U ne peut être que du type (0), (1) ou (2). Comme de plus I est le seul élément d'ordre fini de $\Gamma_1 \cup \Gamma_2$ (confer A.1.), c'est que : U = I.

D. Conclusion

 Q_1 (resp. Q_2) est la partie formée des "mots" dont la "première lettre" est A (resp. A^{-1}). Plus précisément :

١	Q_1	$ les M_0 = A^k \ (k \geqslant 1) $	les U_4 ou U_6 tels que : $\exists l \geqslant 1, M_1 = A^l$
	\mathcal{Q}_2	$\log M_0 = A^{-k} \ (k \geqslant 1)$	les U_4 ou U_6 tels que : $\exists l \geqslant 1, M_1 = A^{-l}$

Notons U_4^- et U_6^- les types rencontrés dans la dernière case de ce tableau. On obtient alors

AQ_2	A^{-k}	U_4^-, U_6^-	U_5, U_7	P_1	P_1M_2	
	$(k \geqslant 0)$	si $l \geqslant 2$	$si l = 1; n, s \geqslant 2$	si $l=n=1$	si $l=s=1$	

Bilan : $Q_1 \cup AQ_2 = \Gamma$. De même, on définit la partie \mathcal{R}_1 (resp. \mathcal{R}_2) formée des "mots" dont la "première lettre" est B (resp. B^{-1}), et on obtient : $\mathcal{R}_1 \cup B\mathcal{R}_2 = \Gamma$. Finalement, le fait que les parties Q_1 , Q_2 , \mathcal{R}_1 , \mathcal{R}_2 soient disjointes résulte de la propriété admise dans le texte ainsi que de l'injectivité des suites $\left(A^k\right)_{k\in\mathbb{Z}}$ et $\left(B^k\right)_{k\in\mathbb{Z}}$. Remarques :

- On a clairement : $\Gamma \setminus \{I\} = Q_1 \cup Q_2 \cup R_1 \cup R_2$.
- Le B. prouve que Γ est le produit libre des groupes Γ_1 et Γ_2 (lemme du ping-pong), chacun étant isomorphe à \mathbb{Z} (confer A.). Ainsi Γ est le groupe libre de rang 2 engendré par A et B et le résultat admis au D. suit.

Partie V: Ensembles G-paradoxaux

A. Exemples

1.

On fait opérer le groupe Γ sur lui-même par translations : U*V=UV, puis on exploite le IV.D.

2.

Comme $G \subset \sigma_E$, G opère sur E de façon naturelle (g*x=g(x)) et si \mathcal{D} est G-dédoublable on dispose de parties \mathcal{D}_1 , \mathcal{D}_2 disjointes telles que : $g_1^{-1}*\mathcal{D}_1=\mathcal{D}=g_2^{-1}*\mathcal{D}_2$ pour des g_i convenables dans G. \mathcal{D} est donc G-paradoxale.

3.

Soit T une partie de E qui rencontre chaque Γ -orbite selon un singleton (l'axiome du choix valide l'existence de T tant qu'on ne sait rien sur E). Par construction : $E = \Gamma * T$. Avec les notations du IV.D., considérons les parties de $E: \mathcal{Q}_1 * T; \mathcal{Q}_2 * T; \mathcal{R}_1 * T; \mathcal{R}_2 * T$. Comme l'action est supposée être sans points fixes (hypothèse de l'énoncé), ces quatre parties de E sont deux à deux disjointes. En effet, pour fixer les idées, si : $U_1 * t_1 = U_2 * t_2$ avec : $t_1, t_2 \in T$ et : $U_1 \in \mathcal{Q}_1, U_2 \in \mathcal{Q}_2$, alors $(U_2^{-1}U_1) * t_1 = t_2$ et donc $t_1 = t_2$ (ils sont dans la même Γ -orbite), puis $U_1 = U_2$ (l'action est sans points fixes), ce qui assure la contradiction puisque : $\mathcal{Q}_1 \cap \mathcal{Q}_2 = \emptyset$. Comme $\Gamma = \mathcal{Q}_1 \cup A \mathcal{Q}_2 = \mathcal{R}_1 \cup B \mathcal{R}_2$, on obtient, via l'action de Γ sur $E: E = (\mathcal{Q}_1 * T) \cup (A * (\mathcal{Q}_2 * T))$ et $E = (\mathcal{R}_1 * T) \cup (B * (\mathcal{R}_2 * T))$. Bilan : E est Γ -paradoxal, avec : $\mathcal{Q} = (\mathcal{Q}_1 * T)$ II $(\mathcal{Q}_2 * T)$; $\mathcal{Q} = (\mathcal{R}_1 * T)$ II $(\mathcal{R}_2 * T)$, les partitions étant évidentes (m = n = 2); $g_1 = h_1 = I$; $g_2 = A, h_2 = B$.

B. Le plan hyperbolique est Γ -paradoxal 1. et 2.(a)

trivial, simple calcul, usuel de surcroît.

(b) $-I \notin \Gamma$ puisque $(-I)^2 = I$ et qu'il n'y a pas d'éléments d'ordre fini dans $\Gamma \setminus \{I\}$ (confer IV.C.). L'injectivité du morphisme restreint à Γ en résulte.

- (a) Procédons de façon "culinaire". Soit $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ dans $SL_2(\mathbb{Z})$ et x dans \mathbb{H}^2 avec $h_M(x)=x$, cela s'écrit : $cx^2+(d-a)x-b=0$ (E). Cas 1 : c=0 et donc $a=d(=\pm 1)$, puis b=0, ainsi : $h_M=id$. Cas 2 : $c\neq 0$; les racines complexes de (E) sont donc x et $\overline{x}\neq x$, elles sont non-réelles et donc $0>\Delta=(d-a)^2+4bc=(a+d)^2-4$, et |tr(M)|<2.
- (b) Notoirement: $M^2 (tr(M))M + I = 0$ (det(M) = 1). Si tr(M) = 0, $M^2 = -I$ et donc $h_M^2 = id$. Si $tr(M) = \pm 1$ et même tr(M) = 1 (quitte à prendre -M), alors $M^2 = M I$ donc $M^3 = M^2 M = -I$, d'où $h_M^3 = id$. Si $|tr(M)| \ge 2$ alors $h_M = id$.

4.

Soit h dans $\overline{\Gamma}\setminus\{id\}$; si h fixe un point de \mathbb{H}^2 , $h\neq id$ est d'ordre fini dans le groupe $\overline{\Gamma}$ (3.(b)) et la contradiction résulte de l'isomorphisme en Γ et $\overline{\Gamma}$, puisque dans $\Gamma\setminus\{id\}$ il n'y a pas d'éléments d'ordre fini.

5.

Grâce au morphisme $U \to h_U$ de Γ vers $\overline{\Gamma} \subset (\sigma_{\mathbb{H}^2}, \circ)$, on fait opérer Γ sur \mathbb{H}^2 en posant : $U * x = h_U(x)$. Selon 4., cette action est sans points fixes et donc \mathbb{H}^2 est Γ -paradoxal (confer V.A.3.). Remarque : les parties qui rendent Γ -paradoxal l'ensemble \mathbb{H}^2 peuvent être prises boréliennes et l'axiome du choix est donc ici totalement superflu.

C. Une partie bornée de \mathbb{R}^2 et Γ -paradoxale

C'est le point-clef. Ecrivons $\gamma = \gamma_U$ avec $U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$; γ est linéaire et $\gamma(\mathbb{Z}^2) = \mathbb{Z}^2$ puisque $U \in M_2(\mathbb{Z})$. Donc, si $p \sim q : \gamma(p) - \gamma(q) = \gamma(p-q) \in \gamma(\mathbb{Z}^2) \subset \mathbb{Z}^2$.

2.

Selon 1., $\forall a, b \in \mathbb{R}^2, a \sim b \Rightarrow \widehat{\gamma(a)} = \widehat{\gamma(b)}$ et en particulier : $\forall a \in \mathbb{R}^2, \widehat{\gamma(a)} = \widehat{\gamma(a)}$. Pour γ_1, γ_2 dans Γ_g et p dans Δ :

$$\widehat{\gamma_1} \circ \widehat{\gamma_2}(p) = \widehat{\gamma_1}(\widehat{\gamma_2}(p)) = \widehat{\gamma$$

Ainsi, $\widehat{\gamma_1} \circ \widehat{\gamma_2} = \widehat{\gamma_1} \circ \widehat{\gamma_2}$. En conséquence : si $\gamma \in \Gamma_g$, $\widehat{\gamma} \circ \widehat{\gamma}^{-1} = \widehat{id_{\mathbb{R}^2}} = id_{\Delta} = \widehat{\gamma}^{-1} \circ \widehat{\gamma}$. Donc $\widehat{\gamma}$ est bijective de bijection réciproque $\widehat{\gamma^{-1}}$. De là, l'application : $\gamma \mapsto \widehat{\gamma}$ est un morphisme du groupe Γ_g vers le groupe (σ_{Δ}, \circ) . Reste donc à prouver le caractère injectif de ce morphisme : Λ . Soit γ dans Γ_g tel que $\widehat{\gamma} = id_{\Delta}$. Cas $1 : \gamma(\Delta) \subset \Delta$, alors $\widehat{\gamma} = \gamma|_{\Delta}^{\Delta}$ et γ , linéaire, fixe tous les points de Δ , donc une base de $\mathbb{R}^2 : \gamma = id_{\mathbb{R}^2}$. Cas $2 : \gamma(\Delta)$ n'est pas inclus dans Δ . Le parallélogramme $\gamma(\Delta)$ rencontre selon un polygone non aplati l'un des huit carrés C_k qui entourent Δ . On note $P = \gamma(\Delta) \cap C_{k_0}$ ce polygone et τ_0 la translation de vecteur dans \mathbb{Z}^2 telle que : $\tau_0(P) \subset \Delta$. Par construction : (1) $P' = \gamma^{-1}(P)$ est un polygone non aplati contenu dans Δ et (2) $\widehat{\gamma}$ et $\tau_0 \circ \gamma$ coïncident sur P'. Comme $\widehat{\gamma} = id_{\Delta}$, l'application affine $\tau_0 \circ \gamma$ fixe au moins trois points non alignés du plan complexe (de P'), d'où : $\tau_0 \circ \gamma = id_{\mathbb{C}}$, puis $\gamma = \tau_0^{-1}$ et enfin $\tau_0^{-1} = id_{\mathbb{C}}$ puisque γ est linéaire, c'est-à-dire $\gamma = id_{\mathbb{C}}$. Les groupes Γ_g et $\widehat{\Gamma_g}$ sont donc isomorphes via Λ .

3.

Il suffit de montrer que Γ est dénombrable. Notons $S = \{A^{\pm 1}, B^{\pm 1}\}$. $\Gamma = \bigcup_{n \in \mathbb{N}} B_S(n)$, où chaque ensemble $B_S(n) = \{U \in \Gamma, l_S(U) \leq n\}$ est fini. Le résultat suit puisque : une réunion dénombrable d'ensembles dénombrables est encore dénombrable.

4.

- (a) Une droite coupe le cercle C_0 en au plus deux points et donc, pour chaque $n, C_0 \cap \mathcal{D}_n$ est fini. De là, $\bigcup_{n \in \mathbb{N}} (C_0 \cup \mathcal{D}_n)$ est dénombrable, alors que C_0 ne l'est pas puisque : si $p_0 \in C_0, C_0 \setminus \{p_0\}$ est équipotent à une droite (par projection stéréographique) et donc à \mathbb{R} . Bilan : $\bigcup_{n \in \mathbb{N}} (C_0 \cap \mathcal{D}_n) \subseteq C_0$.
- (b) Pour γ dans Γ_g , notons $Fix(\widehat{\gamma})$ l'ensemble des points fixes de $\widehat{\gamma}$. Ainsi : $F = \bigcup_{\gamma \in \Gamma_g \setminus \{id_{\mathbb{C}}\}} Fix(\widehat{\gamma})$. Pour p dans Δ et γ dans $\Gamma_g \setminus \{id_{\mathbb{C}}\}$: $p \in Fix(\widehat{\gamma}) \Leftrightarrow \gamma(p) \sim p \Leftrightarrow (\gamma id)(p) \in \mathbb{Z}^2$. Finalement : $Fix(\widehat{\gamma})$ est la trace sur Δ de la préimage de \mathbb{Z}^2 par l'endomorphisme $L = \gamma id$ de \mathbb{R}^2 . Comme $L \neq 0$, deux cas sont possibles. Cas $1 : KerL = \{0\}$. $L^{-1}(\mathbb{Z}^2)$ est équipotent à \mathbb{Z}^2 . Cas 2 : KerL := D est une droite vectorielle. Pour chaque p de \mathbb{Z}^2 , $L^{-1}(\{p\})$ est une droite affine dirigée par D et donc $L^{-1}(\mathbb{Z}^2)$ est une réunion dénombrable de droites affines, toutes parallèles à D. Comme \mathbb{Z}^2 est dénombrable, on peut écrire : $L^{-1}(\mathbb{Z}^2) = \bigcup_{m \in \mathbb{N}} D_m$. Bilan : $F = F_0 \cup F_1$, où F_0 est une partie dénombrable de Δ et $F_1 = \bigcup_{m \in \mathbb{N}} (\Delta \cap D_m)$. En conséquence : $C_0 \cap F = (C_0 \cap F_0) \cup (C_0 \cap F_1)$ et comme $C_0 \subset \Delta$, on a : $C_0 \cap F_1 = \bigcup_{m \in \mathbb{N}} (C_0 \cap D_m)$. Pour respecter l'homogénéité des écritures, on est donc amené à dire que : $C_0 \cap F_0 = \bigcup_{p \in F_0 \cap C_0} (C_0 \cap T_p)$, où T_p est la tangente en p à C_0 . Comme $F_0 \cap C_0$ est dénombrable (avec F_0) et qu'une réunion de deux ensembles dénombrables est encore dénombrable, on peut finalement écrire : $C_0 \cap F = \bigcup_{n \in \mathbb{N}} (C_0 \cap D_n)$, où : $(\mathcal{D}_n)_{n \in \mathbb{N}}$ est une suite de droites affines de \mathbb{R}^2 . De là, via le $(a), C_0 \cap F \subseteq C_0$.

5.

On vient de démontrer que chaque cercle C_0 de rayon strictement positif, contenu dans Δ , n'est pas inclus dans F. Ainsi, F est d'intérieur vide dans \mathbb{R}^2 (on a réussi à se passer du théorème de Baire...).

6.

Selon le 5., on a en particulier $F \subsetneq \Delta$ (et même $F = \emptyset$ dans Δ), donc $\mathcal{P} = \Delta \setminus F \neq \emptyset$. Pour U dans Γ et P dans Γ , on pose : $U * P = \widehat{\gamma}_U(P)$. On définit ainsi une opération du groupe Γ sur l'ensemble Γ puisque les applications suivantes sont des morphismes de groupes (la première est même un isomorphisme) :

 $\Gamma \to \Gamma_g$; $\Gamma_g \to (\sigma_\Delta, \circ)$. Montrons que $\mathcal P$ est une partie stable sous cette action, au sens suivant : $\forall p \in \mathcal P$, $\forall U \in \Gamma$, $U * p \in \mathcal P$. Par l'absurde, il existe $U \in \Gamma$ et p dans $\mathcal P$ tels que : $U * p \in F$; d'où V dans $\Gamma \setminus \{I\}$ tel que : $\widehat{\gamma}_V(U * p) = U * p$. Cela s'écrit : V * (U * p) = V * p, soit $(U^{-1}VU) * p = p$ et donc : $p \in Fix(\widehat{\gamma}_W)$ avec $W = U^{-1}VU$ ce qui impose, par définition de $\mathcal P$, W = I puis V = I, ce qui n'est pas. Bilan : Le groupe Γ opère sur la partie bornée, non vide, $\mathcal P$; de plus, par construction, cette action est sans points fixes et $\mathcal P$ est Γ -paradoxale (confer V.A.3.).