Soit E un \mathbb{C} -espace vectoriel de dimension finie sur \mathbb{C} .

Définition 0.1 On appelle forme sesquilinéaire sur E une forme bi-additive de $E \times E$ dans \mathbb{C} vérifiant les conditions suivantes :

$$\forall \lambda \in \mathbb{C}, \forall (x, y) \in E \times E, \quad b(\lambda x, y) = \lambda b(x, y) \quad et \quad b(x, \lambda y) = \overline{\lambda} b(x, y).$$

Définition 0.2 Une forme sesquilinéaire est dite symétrique si elle vérifie :

$$\forall (x, y) \in E \times E, \quad b(x, y) = \overline{b(y, x)}.$$

Définition 0.3 Une forme sesquilinéaire symétrique est dite définie positive (respectivement définie négative) sur un sous-espace vectoriel F de E, si pour tout $x \in F$ et $x \neq 0$, on a :

$$b(x,x) > 0$$
 (respectivement $b(x,x) < 0$).

Définition 0.4 On appelle espace sesquilinéaire un couple (E,b) où b est une forme sesquilinéaire sur un espace vectoriel E de dimension finie sur \mathbb{C} .

Un espace sesquilinéaire (E,b) est dit symétrique si la forme b est symétrique.

Définition 0.5 Soit (E,b) un espace ses quilinéaire symétrique. Soit F est un sous-espace vectoriel de E. On définit l'orthogonal de F, noté F^{\perp} , par :

$$F^{\perp} = \{ x \in E; \quad b(x, y) = 0, \quad \forall y \in F \}.$$

Définition 0.6 Une base $\mathcal{B} = \{e_1, e_2, \dots e_n\}$ d'un espace sesquilinéaire symétrique (E, b) est dite orthogonale si $b(e_i, e_j)$ est nul pour tous $i \neq j$.

On dit qu'elle est semi-orthonormée si elle est orthogonale et si de plus pour tout i, $b(e_i, e_i)$ vaut 0, 1 ou -1.

Exercice 1

Soit (E,b) un espace sesquilinéaire symétrique. On suppose que b est non nulle.

- 1. Montrer qu'il existe un vecteur $x \in E$, tel que $b(x, x) \neq 0$.
- 2. Montrer qu'il existe un vecteur $y \in E$ tel que b(y, y) soit égal à 1 ou -1.

Exercice 2

Soit (E, b) un espace sesquilinéaire symétrique.

Montrer qu'il existe une base semi-orthonormée de (E, b).

Exercice 3

On suppose que $E=\mathbb{C}^2$ et que la forme b est définie par la matrice :

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Construire une base semi-orthonormé de (E, b).

Exercice 4

Soit (E,b) un espace sesquilinéaire symétrique. Soit $\mathcal{B}=\{e_1,e_2,\ldots,e_n\}$ une base semi-orthonormée de (E,b). Soit E_+ (respectivement E_-,E_0) le sous-espace vectoriel de E engendré par les vecteurs e_i tels que $b(e_i,e_i)=1$ (respectivement $b(e_i,e_i)=-1,b(e_i,e_i)=0$). Soit E un sous-espace vectoriel de E.

- 1. (a) Montrer que $F \cap (E_- \oplus E_0)$ est nul si b est définie positive sur F.
 - (b) Montrer que $F \cap (E_+ \oplus E_0)$ est nul si b est définie négative sur F.
- 2. En déduire que le nombre $\sum_i b(e_i, e_i)$ est indépendant de \mathcal{B} . On le note dans la suite $\sigma(E, b)$.

Exercice 5

Soit n > 0. Soit $E = \mathbb{C}^n$ muni de sa base canonique $\{e_1, \dots, e_n\}$. Soit b la forme sesquilinéaire sur E vérifiant :

$$b(e_i, e_j) = \begin{cases} 1 & \text{si } i + j = n + 1, \\ 0 & \text{sinon.} \end{cases}$$

Calculer le nombre $\sigma(E, b)$.

Exercice 6

Soit (E, b) un espace sesquilinéaire symétrique. Soit x un vecteur non nul de E.

- 1. On suppose que $x \in E^{\perp}$. Montrer qu'il existe une base semi-orthonormée $\mathcal{B} = \{e_1, e_2, \dots, e_n\}$ telle que $x = e_1$.
- 2. On suppose que b(x,x) est non nul. Montrer qu'il existe une base semi-orthonormée $\mathcal{B} = \{e_1, e_2, \dots, e_n\}$ et un réel $\lambda > 0$ tels que $x = \lambda e_1$.

Exercice 7

Soit (E,b) un espace sesquilinéaire symétrique. Soit $F=\mathbb{C}x$ le sous-espace vectoriel de E engendré par le vecteur non nul $x\in E$. Soit $G=F^\perp$ son orthogonal.

Déterminer l'espace G selon les cas de l'exercice 6 et montrer que dans tous les cas, on a :

$$\sigma(E) = \sigma(F) + \sigma(G).$$

Exercice 8

Soit (E,b) un espace sesquilinéaire symétrique. Soit F un sous-espace vectoriel de E et $G=F^{\perp}$. Soit $\{u_1,u_2,\ldots,u_p\}$ une base semi-orthonormée de (F,b). Pour tout $i\leq p$, on note F_i le sous-espace vectoriel engendré par $\{u_1,\ldots u_i\}$ et $G_i=F_i^{\perp}$.

Déterminer (en fonction de $\sigma(E)$) les nombres $\sigma(F_i) + \sigma(G_i)$. En déduire la formule :

$$\sigma(E) = \sigma(F) + \sigma(F^{\perp}).$$

Soit (E, b) un espace sesquilinéaire. Soit F un sous-espace vectoriel de E.

Définition 0.7 On appelle orthogonal à droite (respectivement à gauche) de F l'ensemble F^{\perp} (respectivement $^{\perp}F$) des vecteurs $x \in E$ vérifiant :

$$\forall y \in F, \quad b(y, x) = 0 \quad (respective ment \ b(x, y) = 0).$$

Définition 0.8 On dit que la forme b est non-dégénérée si les espaces E^{\perp} et $^{\perp}E$ sont nuls.

Exercice 9

Soit (E, b) un espace sesquilinéaire. Soit $\mathcal{B} = \{e_1, \dots, e_n\}$ une base de E. Soit M la matrice de b dans cette base.

1. Soient $x, y \in E$ et X, Y les matrices colonnes ayant comme coefficients les coordonnées de x et y dans la base \mathcal{B} . Montrer la formule :

$$b(x, y) = {}^{t}XM\overline{Y}.$$

- 2. Montrer que les conditions suivantes sont équivalentes :
 - (a) b est non-dégénérée;
 - (b) M est inversible;
 - (c) $E^{\perp} = \{0\}$;
 - (d) $^{\perp}E = \{0\}.$

Exercice 10

Soit (E,b) un espace sesquilinéaire. Soit F un sous-espace vectoriel de E.

- 1. Montrer que F^{\perp} et ${}^{\perp}F$ sont des sous-espaces vectoriels de E.
- 2. (a) Montrer les inégalités :

$$\dim F + \dim F^{\perp} \ge \dim E$$
 et $\dim F + \dim^{\perp} F \ge \dim E$.

- (b) Montrer que ces inégalités sont des égalités si b est non-dégénérée sur E.
- 3. On suppose que b est non-dégénérée sur F. Montrer les égalités :

$$E = F \oplus F^{\perp}$$
 et $F \oplus {}^{\perp}F = E$.

Exercice 11

Soit $E=\mathbb{C}^2$ muni de sa base canonique (e_1,e_2) . Soit b la forme sesquilinéaire sur E vérifiant :

$$\forall i \in \{1, 2\}, b(e_i, e_1) = 0 \text{ et } b(e_i, e_2) = 1.$$

Déterminer un sous-espace vectoriel F de E tel que F^{\perp} et ${}^{\perp}F$ n'aient pas la même dimension.

Exercice 12

Soit (E, b) un espace sesquilinéaire. Montrer qu'il existe un endomorphisme bijectif f de E tel que la forme $(x, y) \mapsto b(f(x), y)$ soit une forme sesquilinéaire symétrique.