Préparation Agrégation de Mathématiques Année 2015–2016

Calcul Différentiel. Différentiabilité des fonctions convexes

Exercice 1

On munit \mathbb{R}^2 de la norme $|(x_1, x_2)| = \max(|x_1|, |x_2|)$. Soit $\gamma > 0$ et soit \mathcal{L}_{γ} l'ensemble des fonctions $f : \mathbb{R} \to \mathbb{R}$ Lipschitziennes s'annulant en 0. Soit $\varphi \in \mathcal{L}_{\gamma}$ et soit $x \in \mathbb{R}$. On pose: $\forall y \neq x$,

$$\Delta_y \varphi = \frac{(y, \varphi(y)) - (x, \varphi(x))}{|(y, \varphi(y)) - (x, \varphi(x))|},$$

 $U_x \varphi = \{ v \in \mathbb{R}^2, \ \exists (x_n)_{n \geq 0} \in \mathbb{R} \setminus \{x\}, \ \lim_{n \to +\infty} x_n = x \text{ et } \lim_{n \to +\infty} \Delta_{x_n} \varphi = v \}$ et on définit l'espace tangent au graphe de φ en x par: $T_x \varphi = \bigcup_{v \in U_x \varphi} \mathbb{R} v$.

- 1. On note pr_1 la projection sur la première coordonnée: $\operatorname{pr}_1(u) = u_1$, $\forall u = (u_1, u_2) \in \mathbb{R}^2$. Montrer que $\operatorname{pr}_1(T_x \varphi) = \mathbb{R}$, $\forall x \in \mathbb{R}$. Indication: On pourra remarquer que $\forall y \neq x$, $|\Delta_y \varphi| = 1$.
- 2. On définit le cône horizontal H^{γ} par:

$$H^{\gamma} := \{(u_1, u_2) \in \mathbb{R}^2, |u_2| \le \gamma |u_1| \}.$$

Montrer que: $T_x \varphi \subset H^{\gamma}$.

- 3. Soit $\phi : \mathbb{R} \to \mathbb{R}$ définie par: $\phi(x) = \frac{x}{2} \sin(\ln(|x|))$. Peut-on trouver $\gamma > 0$ tel que $\phi \in \mathcal{L}_{\gamma}$? Expliciter $T_0 \phi$.
- 4. On suppose $\gamma \leq 1$. Montrer que si $T_x \varphi$ est un sous-espace vectoriel de dimension 1 de \mathbb{R}^2 , alors φ est dérivable en x.

Exercice 2

1. Soit $-\infty \le a < b \le +\infty$ et soit I =]a, b[. Soit $f \in \mathcal{C}_I := \mathcal{C}^{\infty}(I, \mathbb{R})$. On suppose que f admet 0 pour unique point critique, que ce point critique est non dégénéré, que f(0) = 0 et f''(0) > 0.

- (a) Etudier les variations de f.
- (b) On pose $g(x) = \int_0^1 (1-u)f''(xu) du$, $\forall x \in I$. Montrer que $f(x) = x^2 g(x)$, $\forall x \in I$.
- (c) Montrer que g est de classe \mathcal{C}^{∞} et g > 0 sur I.
- (d) Construire une fonction h croissante et de classse C^{∞} sur I telle que $\forall x \in I$, $f(x) = h(x)^2$. Montrer que h est un difféomorphisme, appelé racine carrée de f, de I sur un intervalle J qu'on précisera en fonction de f.
- 2. On dit que deux parties A, B du plan \mathbb{R}^2 sont de même type s'il existe deux intervalles ouverts $I \subset \mathbb{R}$ et $J \subset \mathbb{R}$ et un difféomorphisme $\phi : I^2 \to J^2$ tels que $A \subset I^2, B \subset J^2$ et $\phi(A) = B$.

Un entier n > 0 étant fixé, on se donne n réels $a_0 < \cdots < a_n$ tels que les sommes $a_i + a_j$, $i \le j$, soient toutes distinctes.

On note \mathcal{A}_n l'ensemble des fonctions $f:\mathbb{R}\to\mathbb{R}$ vérifiant les propriétés suivantes:

- f est de classe \mathcal{C}^{∞} ;
- f possède exactement n points critiques $x_0(f) < \cdots < x_{n-1}(f)$ et ils sont tous non dégénérés;
- les valeurs critiques de f sont a_0, \dots, a_{n-1} ; autrement dit, il exste une permutation σ_f de a_0, \dots, a_{n-1} , appelée permutation associée à f, telle que $f(x_i(f)) = \sigma_f(a_i), \forall i \in \{0, \dots, n-1\}$;
- $\lim_{x \to -\infty} f(x) = +\infty$, $\lim_{x \to +\infty} |f(x)| = +\infty$.

Pour alléger les notations, lorsqu'il n'y a pas d'ambiguïté, on note x_0, \dots, x_{n-1} les points critiques de f. De même, la notation \mathcal{A}_n est en réalité une abréviation pour $\mathcal{A}_n(a_0, \dots, a_{n-1})$.

On définit:

$$\forall f \in \mathcal{A}_n, \quad \forall \lambda \in \mathbb{R}, \quad E_{\lambda}(f) = \{(x, y) \in I^2, f(x) + f(y) = \lambda\}.$$

- (a) Soit $f \in \mathcal{A}_n$. Préciser les variations de f suivant la parité de n.
- (b) i. Montrer que la relation \sim définie par: $f \sim g$ si et seulement si il existe un difféomorphisme croissant h de \mathbb{R} tel que $f = g \circ h$ est une relation d'équivalence sur \mathcal{A}_n .

- ii. Montrer que si $f \sim g$, alors $E_{\lambda}(f)$ et $E_{\lambda}(g)$ sont de même type, $\forall \lambda \in \mathbb{R}$.
- (c) Soit h un difféomorphisme croissant de \mathbb{R} . Montrer que $f \in \mathcal{A}_n \iff f \circ h \in \mathcal{A}_n$ et qu'alors $\sigma_f = \sigma_{f \circ h}$.
- (d) Réciproquement, on suppose que f et g sont deux éléments de \mathcal{A}_n tels que $\sigma_f = \sigma_g$.
 - i. Montrer qu'il existe une unique bijection $h : \mathbb{R} \to \mathbb{R}$ croissante telle que $f = g \circ h$ et $h(x_k(f)) = x_k(g), \forall k \in \{0, \dots, n-1\}.$
 - ii. En utilisant la question 1, montrer que h est un difféomorphisme.

Exercice 3

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe.
 - (a) Montrer que

$$\forall a < b < c \in \mathbb{R}, \quad \frac{f(b) - f(a)}{b - a} \le \frac{f(c) - f(a)}{c - a} \le \frac{f(c) - f(b)}{c - b}.$$

- (b) Montrer que pour tout $x \in \mathbb{R}$, la dérivée à gauche $f'_g(x)$ et la dérivée à droite $f'_d(x)$ de f en x existent, que $f'_g(x) \leq f'_d(x)$ et que si $x_1 < x_2$, alors: $\forall x_1 < x_2 \in \mathbb{R}$, $f'_g(x_1) \leq f'_d(x_1) \leq f'_g(x_2)$.
- (c) Montrer que f est continue et que le sous-ensemble $\mathcal S$ de $\mathbb R$ où f n'est pas dérivable est fini ou dénombrable.

Indication: Vérifier l'existence de $\psi : \mathcal{S} \to \mathbb{Q}$ telle que $\forall x \in \mathcal{S}$, $\psi(x) \in]f'_{q}(x), f'_{d}(x)[$.

(d) Soit $x \in \mathbb{R}$. On définit $\tau : \mathbb{R}^* \to \mathbb{R}$ par:

$$\forall t \in \mathbb{R}, \quad \tau(t) = \frac{f(x+t) + f(x-t) - 2f(x)}{t}.$$

Montrer que τ est impaire est croissante sur \mathbb{R}^* , puis que f est dérivable en x si et seulement si $\lim_{t\to 0^+} \tau(t) = 0$.

2. Soit $n \ge 1$ et soit $C \subset \mathbb{R}^n$ un ensemble convexe tel que $-x \in C$, $\forall x \in C$ et soit $F: C \to \mathbb{R}$ une fonction convexe. On suppose que F(0) = 0 et que F est majorée sur C. Montrer que: $\sup_{x \in C} F(x) = \sup_{x \in C} |F(x)|$.

- 3. Soit $g: \mathbb{R}^n \to \mathbb{R}$ une fonction convexe
 - (a) Soit $x \in \mathbb{R}^n$ et soit $\alpha > 0$. On note (e_1, \dots, e_n) la base canonique de \mathbb{R}^n . Montrer que

$$\sup_{\|h\|_1 < \alpha} g(x+h) - g(x) = \max_{1 \le i \le n, |\varepsilon| = 1} g(x + \varepsilon \alpha e_i) - g(x).$$

- (b) Montrer que g est continue sur \mathbb{R}^n .
- 4. On pose: $\forall k \in \mathbb{N}^*, \forall t > 0, \forall i \in \{1, \dots, n\},\$

$$O_{k,i}(t) = \left\{ x \in \mathbb{R}^n, \ \frac{g(x + te_i) + g(x - te_i) - 2g(x)}{t} < \frac{1}{k} \right\},$$

- (a) Montrer que $V_{k,i} = \bigcup_{t>0} O_{k,i}(t)$ est ouvert.
- (b) Soit $\Delta_i = \bigcap_{k \geq 1} V_{k,i}$, $1 \leq i \leq n$. Montrer que

$$\Delta_i = \{ x \in \mathbb{R}^n, \ \frac{\partial g}{\partial x_i}(x) \text{ existe} \}.$$

- (c) Montrer que Δ_i est dense dans \mathbb{R}^n , $1 \leq i \leq n$. *Indication*: Utiliser 1.c.
- 5. Montrer que $\Omega_g := \bigcap_{1 \leq i \leq n} \Delta_i$ est dense dans \mathbb{R}^n .

 Indication: Remarquer que Δ_i est une intersection dénombrable d'ouverts.
- 6. Soit $x \in \Omega_q$. On définit G par

$$G(y) = g(y) - g(x) - \sum_{i=1}^{n} (y_i - x_i) \frac{\partial g}{\partial x_i}(x), \quad \forall y \in \mathbb{R}^n.$$

(a) Montrer que $\forall h \in \mathbb{R}^n$,

$$|G(x+h)| \le \max_{1 \le i \le n, |\varepsilon|=1} G(x+\varepsilon ||h||_1 e_i)$$

(b) En déduire que Ω_g est l'ensemble des points de \mathbb{R}^n en lesquels g est différentiable.