Préparation Agrégation de Mathématiques Année 2015–2016

Séparabilité du dual. Difféomorphismes

Exercice 1

1. Soit 0 < a < b < 1 et soit V un sous-espace vectoriel fermé de $\mathcal{C}([0,1])$ tel que tout $f \in V$ est de classe \mathcal{C}^1 sur [a,b]. On définit:

$$\forall (x,y) \in [a,b]^2 \text{ avec } x \neq y, \quad \forall f \in V, \quad \xi_{(x,y)}(f) = \frac{f(x) - f(y)}{x - y}$$

- (a) Montrer que $\xi_{(x,y)} \in V^*$.
- (b) Montrer que

$$\forall f \in V, \quad \sup_{(x,y)\in[a,b]^2, \ x\neq y} |\xi_{(x,y)}(f)| < +\infty$$

(c) Montrer qu'il existe $\mathcal{N}(a,b) > 0$ tel que:

$$\forall f \in V, \quad \forall (x, y) \in [a, b]^2, \quad |f(x) - f(y)| \le \mathcal{N}(a, b)|x - y| ||f||_{\infty}.$$

(d) Soit $(t_{\ell})_{0 \leq L}$ une suite finie de points de [a,b] tels que

$$0 < t_{\ell+1} - t_{\ell} \le \frac{1}{\mathcal{N}(a, b)} \quad 0 \le \ell < L \quad \text{et} \quad t_0 = a, \quad t_L = b.$$

Montrer que

$$\forall f \in V, \quad \sup_{t \in [a,b]} |f(t)| \le \sup_{0 \le \ell \le L} |f(t_{\ell})| + \frac{1}{2} ||f||_{\infty}.$$

- 2. Soit F_0 un sous-espace vectoriel fermé de $\mathcal{C}([0,1])$ tel que tout $f \in F_0$ est de classe \mathcal{C}^1 sur [0,1]. Montrer que F_0 est de dimension finie.
- 3. Soit X_0 un sous-espace vectoriel fermé de $\mathcal{C}([0,1])$ tel que tout $f \in X_0$ est de classe \mathcal{C}^1 sur [0,1[.

(a) Soit $(a_j)_{j\geq 0}$, $a_j\in [0,1[$, une suite strictement croissante vers 1 et soit $(s_n)_{n\geq 0}$, $s_n\in [0,1]$, une suite strictement croissante vers 1. Soit $(n_j)_{j\geq 0}$ une suite d'entiers strictement croissante vers $+\infty$. On suppose que $s_0=a_0=0$ et $\forall j\in \mathbb{N}$,

$$s_{n_j} = a_j$$
 et $\forall n \in \{n_j, \dots, n_{j+1} - 1\}, \quad s_{n+1} - s_n \le \frac{1}{\mathcal{N}(a_j, a_{j+1})}.$

Soit $J: f \in X_0 \mapsto (f(s_n))_{n\geq 0}$. Montrer que J prend ses valeurs dans l'espace c des suites numériques convergentes muni de la norme

$$u \in c \mapsto N_{\infty}(u) = \sup_{n \ge 0} |u_n|$$

et que:

$$||f||_{\infty} \le 2N_{\infty}(J(f)) \le 2||f||_{\infty}, \quad \forall f \in X_0.$$

- (b) En déduire que X_0 est isomorphe à un sous-espace de c puis que X_0 est isomorphe à un sous-espace Z_0 de l'espace c_0 des suites numériques convergentes vers 0.
 - Indication: Utiliser l'application T qui associe à $u \in c$ la suite $(l, u_0 l, \dots, u_n l, \dots)$.
- (c) Montrer que X_0^* est isomorphe à Z_0^* . En déduire que X_0^* est séparable.

Indication: On pourra s'appuyer sur le Théorème de Hahn-Banach et la propriété d'isomorphisme entre c_0^* et ℓ^1 .

- 4. On se propose de montrer par l'absurde que $\mathcal{C}([0,1])^*$ n'est pas séparable.
 - (a) On pose:

$$\forall x \in [0, 1], \quad \forall f \in \mathcal{C}([0, 1]), \quad \delta_x(f) = f(x).$$

Montrer que $\delta_x \in \mathcal{C}([0,1])^*, \forall x \in [0,1]$, et que

$$\forall (x,y) \in [0,1]^2, \quad x \neq y, \quad \|\delta_x - \delta_y\|_{\mathcal{C}([0,1])^*} = 2.$$

(b) Soit $(\omega_n)_{n\geq 0}$ une suite dense dans $\mathcal{C}([0,1])^*$ et soit χ l'application qui à tout $x\in [0,1]$ associe un entier n tel que $\|\delta_x-\omega_n\|_{\mathcal{C}([0,1])^*}<1$. Montrer que χ induit une bijection de [0,1] sur une partie de \mathbb{N} . En déduire que $\mathcal{C}([0,1])^*$ n'est pas séparable.

Exercice 2

Soit $\gamma > 0$ et soit \mathcal{L}_{γ} l'ensemble des fonctions $f : \mathbb{R} \to \mathbb{R}$ γ -Lipschitziennes s'annulant en 0.

1. (a) Montrer que l'application

$$d_{\gamma}: (\varphi, \psi) \mapsto \sup_{x \neq 0} \frac{|\varphi(x) - \psi(x)|}{|x|}$$

est une distance sur \mathcal{L}_{γ} .

- (b) Montrer que pour la métrique définie par la distance d_{γ} , \mathcal{L}_{γ} est complet.
- (c) On munit \mathbb{R}^2 de la norme $\|\cdot\|_{\infty}$. Pour toute application $h \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$ de différentielle $dh \in \mathcal{L}(\mathbb{R}^2, \mathbb{R})$ on pose:

$$|h|_{\infty} = \sup_{x \in \mathbb{R}^2} |h(x)|, \quad |dh|_{\infty} = \sup_{x \in \mathbb{R}^2} ||dh_x||$$

où $||dh_x||$ est la norme subordonnée dans $\mathcal{L}(\mathbb{R}^2,\mathbb{R}), \forall x \in \mathbb{R}^2,$

$$|h|_{\mathcal{C}^1} = \max(|h|_{\infty}, |dh|_{\infty}).$$

Soit $\mu > 0$, $h \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$, $\varphi \in \mathcal{L}_{\gamma}$ tels que $|h|_{\mathcal{C}^1}(1 + \gamma) < \mu$. Montrer que l'application G_{φ} définie par

$$\forall x \in \mathbb{R}, \quad G_{\varphi}(x) = \mu x + h(x, \varphi(x))$$

est strictement croissante. En déduire que G_{φ} est un homéomorphisme sur \mathbb{R} .

2. Soit $\lambda, \mu \in \mathbb{R}$ vérifiant $0 < \lambda < 1 < \mu$. Soit $\alpha, \beta \in C^1(\mathbb{R}^2, \mathbb{R}^2)$ vérifiant $\alpha(0,0) = \beta(0,0) = 0$ et soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par

$$f(x,y) = (\mu x + \alpha(x,y), \lambda y + \beta(x,y)).$$

On suppose qu'il existe $\delta > 0$ tel que $|\alpha|_{\mathcal{C}^1} < \delta$ et $|\beta|_{\mathcal{C}^1} < \delta$.

(a) Montrer que si $2\delta < \lambda$, alors f est un difféomorphisme de \mathbb{R}^2 . Indication: On pourra montrer que $\forall (x', y') \in \mathbb{R}^2$, l'application

$$F_{(x',y')}: (x,y) \mapsto \left(\frac{x'}{\mu} - \frac{\alpha(x,y)}{\mu}, \frac{y'}{\lambda} - \frac{\beta(x,y)}{\lambda}\right)$$

est strictement contractante.

Dans la suite, on fixe $\gamma > 0$ vérifiant:

$$0 < \gamma < 1$$
 et $0 < \delta < \frac{\gamma(\mu - \lambda)}{\gamma + 2}$.

(b) On appelle graphe d'une application $\varphi: \mathbb{R} \to \mathbb{R}$ l'ensemble

$$H\varphi = \{(x, \varphi(x)), x \in \mathbb{R}\}.$$

Montrer que $\forall \varphi \in \mathcal{L}_{\gamma}$ il existe une unique application $\psi : \mathbb{R} \to \mathbb{R}$ telle que $f(H\varphi) = H\psi$. On note $f_* : \varphi \mapsto \psi$ l'application ainsi définie.

- (c) Montrer que f_* est une application de $\mathcal{L}_{\gamma} \to \mathcal{L}_{\gamma}$.
- (d) Montrer que $\forall \varphi, \varphi' \in \mathcal{L}_{\gamma}, \quad \forall x \in \mathbb{R},$

$$|f_*(\varphi)(G_{\varphi}(x)) - f_*(\varphi')(G_{\varphi}(x))| \le (\lambda + \delta(1+\gamma))|\varphi(x) - \varphi'(x)|.$$

où l'on a posé:

$$G_{\varphi}(x) = \mu x + \alpha(x, \varphi(x)).$$

- (e) En déduire qu'il existe une application $\varphi^+ \in \mathcal{L}_{\gamma}$ dont le graphe $H\varphi^+$ est invariant par f.
- (f) Montrer que

$$|f(x,\varphi^+(x))| \ge (\mu - \delta)|(x,\varphi^+(x))|.$$

(g) Montrer que si $\delta > 0$ est suffisamment petit et si $\gamma > 0$ est convenablement choisi, alors:

$$\forall x \in \mathbb{R}, \quad \lim_{n \to +\infty} |f^{-n}(x, \varphi^+(x))| = 0.$$