Eléments d'Analyse Fonctionnelle

Préparation Agrégation de Mathématiques Université de Rennes 1 Isabelle Gruais 19 octobre 2017

1 Introduction

2 Convergence des suites de fonctions

2.1 Convergence uniforme

Proposition

Soit X un espace topologique, (Y,d) un espace métrique. Soit $\mathcal{F}(X,Y)$ l'ensemble des fonctions $X\to Y$ muni de la distance de la convergence uniforme :

$$d(f,g) = \sup_{x \in X} d(f(x), g(x)), \quad \forall f, g \in \mathcal{F}(X, Y).$$

Si Y est complet, alors $(\mathcal{F}(X,Y),d)$ est complet.

Démonstration

1. Soit $(f_n) \in \mathcal{F}(X,Y)$ une suite de Cauchy pour d. Soit $\varepsilon > 0$ et soit $n_0 > 0$ tel que

$$\forall n \ge n_0, \quad \forall p \ge 0, \quad d(f_{n+p}, f_n) < \varepsilon.$$

Soit $x \in X$. Alors:

$$\forall n \ge n_0, \quad \forall p \ge 0, \quad d(f_{n+p}(x), f_n(x)) < \varepsilon.$$

i.e. que la suite $(f_n(x))$ est de Cauchy dans (Y, d) complet, donc convergente : soit $f_n(x) \to f(x)$.

2. Soit $\varepsilon > 0$ et soit $n_0 > 0$ tel que

$$\forall x \in X, \quad \forall n \ge n_0, \quad \forall p \ge 0, \quad d(f_{n+p}(x), f_n(x)) < \varepsilon.$$

On fixe $n > n_0$. Alors:

$$\forall x \in X, \quad \lim_{p \to +\infty} d(f_{n+p}(x), f_n(x)) = d(f(x), f_n(x)) \le \varepsilon$$

i.e.:
$$d(f, f_n) \le \varepsilon$$
, $\forall n \ge n_0$,

et donc $f_n \to f$ dans $(\mathcal{F}(X,Y), d)$.

Proposition

- 1. L'espace $\mathcal{C}(X,Y)$ est fermé dans $\mathcal{F}(X,Y)$
- 2. Si de plus Y est complet, alors $(\mathcal{C}(X,Y),d)$ est complet.

Démonstration

1. On suppose X compact. Soit $(f_n) \in \mathcal{C}(X,Y)$ une suite convergente dans $(\mathcal{F}(X,Y),d)$, soit $f_n \to f \in \mathcal{F}(X,Y)$. Soit $x_0 \in X$ et soit $n_0 > 0$ tel que

$$d(f_n, f) < \varepsilon, \quad \forall n \ge n_0.$$

On fixe $n \geq n_0$. Alors

$$d(f(x), f(x_0)) \le d(f_n, f) + d(f_n(x), f_n(x_0)) + d(f_n, f) \le 2\varepsilon + d(f_n(x), f_n(x_0)).$$

Comme $f_n \in \mathcal{C}(X,Y)$, il existe $\eta_n > 0$ t.q.

$$\forall x \in X, \quad d(x, x_0) < \eta_n \Rightarrow d(f_n(x), f_n(x_0)) < \varepsilon.$$

Soit $d(x, x_0) < \eta_n$. Alors $d(f(x), f(x_0)) \le 3\varepsilon$.

2. Si en outre Y est complet, alors C(X,Y) est fermé dans F(X,Y) complet, donc complet.

2.2 Convergence simple

Théorème de Dini

Soit X un espace compact et soit $(f_n) \in \mathcal{C}(X, \mathbb{R})$ une suite monotone qui converge simplement vers f sur X. Alors la convergence vers f est uniforme sur X.

Démonstration

- 1. Pour fixer les idées, on suppose que la suite (f_n) est croissante vers f. En remplaçant f_n par $f f_n$, on se ramène au cas où f_n décroît vers 0.
- 2. Soit $\varepsilon > 0$. On pose :

$$X_n = \{ x \in X, \quad f_n(x) \ge \varepsilon \}, \quad \forall n \in \mathbb{N}.$$

Les fonctions f_n étant continues, X_n est un fermé, $\forall n$. On remarque que :

$$x \in \bigcap_{n \ge 0} X_n \iff \forall n \ge 0, \quad f_n(x) \ge \varepsilon$$

ce qui contredit que $f_n(x) \to 0$, $\forall x \in X$. On en déduit que $\bigcap_{n \geq 0} X_n = \emptyset$ dans X compact, donc qu'il existe $n_1 < n_2 < \cdots n_k$ tels que $\bigcap_{i=1}^k X_{n_i} = \emptyset$. La suite (f_n) étant décroissante par hypothèse, il en est de même de (X_n) et alors $\bigcap_{i=1}^k X_{n_i} = X_{n_k} = \emptyset$. On en déduit que $X_n = \emptyset$, $\forall n \geq n_k$, i.e. :

$$\forall x \in X, \quad \forall n \ge n_k, \quad 0 \le f_n(x) < \varepsilon,$$

ce qui termine la preuve.

2.3 Théorème d'Ascoli

Proposition

Un espace métrique (X, d) est compact si et seulement si (X, d) est complet et si $\forall \varepsilon > 0$, X peut être recouvert par un nombre fini de boules ouvertes de rayon ε .

Démonstration

1. \Leftarrow Soit $\varepsilon > 0$. On suppose que X est complet et peut être recouvert par un nombre fini de boules ouvertes de rayon ε .

Soit $(x_n)_{n\geq 0}$ une suite de X et soit $X = \bigcup_{i=1}^{N_0} B(x_i^{(0)}, \varepsilon)$ un recouvrement fini de X. La suite $(x_n)_{n\geq 0}$ étant infinie (sinon, le résultat est immédiat), il existe une suite extraite $(x_{\varphi_0(n)}) \in B(x_{i_0}^{(0)}, \varepsilon)$ contenue dans une boule $B(x_{i_0}^{(0)}, \varepsilon)$. De même, soit $X = \bigcup_{i=1}^{N_1} B(x_i^{(1)}, \varepsilon/2)$ un recouvrement de X et soit $(x_{\varphi_0\circ\varphi_1(n)}) \in B(x_{i_1}^{(1)}, \varepsilon)$ contenue dans une boule $B(x_{i_1}^{(1)}, \varepsilon)$. Par récurrence sur k, on construit des suites extraites

 $(x_{\varphi_0 \circ \cdots \circ \varphi_k(n)} \in B(x_{i_k}^{(k)}, \varepsilon/2^k)$. On pose $y_n = x_{\varphi_0 \circ \cdots \circ \varphi_n(n)}$. Par construction $y_n \in B(x_{i_n}^{(n)}, \varepsilon/2^n)$. Soit $n, p \ge 0$. Alors

$$(y_{n+p}, y_n) \in B(x_{i_n}^{(n)}, \varepsilon/2^n)^2, \quad \forall n, p \ge 0$$

ce qui montre que (y_n) est de Cauchy dans X complet, donc convergente, soit $y_n \to y_*$. On conclut que X est compact.

 $2. \Rightarrow \text{La réciproque est immédiate.}$

Corollaire

Dans (X, d) complet, $\bar{A} \subset X$ est compact si et seulement si $\forall \varepsilon > 0$, A peut être recouvert par un nombre fini de boules ouvertes de rayon ε .

Théorème d'Ascoli

Soit (X, d) compact, (Y, d) complet. On suppose que la famille $A \subset \mathbf{C}(X, Y)$ est équicontinue et vérifie : $\forall x \in X$, l'ensemble $\{f(x), f \in A\}$ est compact. Alors \overline{A} est compact.

Démonstration

1. Soit $\varepsilon > 0$. La famille A étant équicontinue sur le compact X, il existe $\eta > 0$ tel que

$$\forall x, y \in X, \quad d(x, y) < \eta \Rightarrow \forall f \in A, \quad d(f(x), f(y)) < \varepsilon.$$

Soit $X = \bigcup_{i=1}^{I} B(x_i, \eta)$ un recouvrement fini. Pour tout $i, \overline{\{f(x_i), f \in A\}}$ est compact par hypothèse, donc peut être recouvert par un nombre fini de boules ouvertes de rayon η . Soit donc

$$\cup_{i=1}^{I} \overline{\{f(x_i), f \in A\}} \subset \cup_{j=1}^{J} B(y_j, \varepsilon).$$

Soit $f, g \in A$ et soit $x \in X$, par exemple $x \in B(x_i, \eta), f(x_i) \in B(y_j, \varepsilon),$ $g(x_i) \in B(y_k, \varepsilon)$. Alors

$$d(f(x), g(x)) \le d(f(x), f(x_i)) + d(f(x_i), y_j) + d(y_j, y_k) + d(y_k, g(x_i)) + d(g(x_i), g(x)) < 4\varepsilon + d(y_j, y_k).$$

Si $j=k=\gamma(i)$, alors $d(f(x),g(x))\leq 4\varepsilon$. Pour réaliser cela, on introduit l'ensemble Γ des applications $\gamma:\{1,\cdots,I\}\to\{1,\cdots,J\}$ et on note

$$A_{\gamma} = \{ f \in A, \quad f(x_i) \in B(y_{\gamma(i)}, \varepsilon), \quad \forall i \}, \quad \forall \gamma \in \Gamma.$$

Alors $A \subset \bigcup_{\gamma \in \Gamma} A_{\gamma}$ et le recouvrement est fini. On a : $\forall \gamma \in \Gamma$,

$$\forall f, g \in A_{\gamma}, \quad d(f, g) \le 4\varepsilon.$$

i.e. : $A_{\gamma} \subset B(g_{\gamma}, 4\varepsilon)$ pour tout choix de $g_{\gamma} \in A_{\gamma}$, $\gamma \in \Gamma$. Comme Γ est fini et que $A \subset \bigcup_{\gamma \in \Gamma} A_{\gamma}$, on a obtenu un recouvrement fini de A par des boules ouvertes de 4ε , $\forall \varepsilon > 0$.

Le théorème suivant est la variante L^p du théorème d'Ascoli.

Théorème de Fréchet-Kolmogorov

Soit $\Omega \subset \mathbb{R}^N$ un ouvert, soit $\omega \subset\subset \Omega$ un ouvert, i.e. $\overline{\omega} \subset \Omega$ et $\overline{\omega}$ est un compact. Soit $\mathcal{F} \subset L^p(\Omega)$, $1 \leq p < +\infty$, une partie bornée de $L^p(\Omega)$. On suppose que

$$\forall \varepsilon > 0, \quad \exists \eta > 0 \quad \text{tq} \quad \eta < d(\omega, \mathbb{R}^N \setminus \Omega)$$

et

$$\forall h \in \mathbb{R}^N, \quad |h| < \eta \Rightarrow \|\tau_h f - f\|_{L^p(\omega)} < \varepsilon$$

où $\tau_h f = f(x+h)$, p.p. dans ω . Alors, $\overline{\mathcal{F}}|_{\omega}$ est un compact de $L^p(\omega)$, $1 \leq p < +\infty$, $\forall \omega \subset\subset \Omega$.

Démonstration

1. Soit $\rho \in \mathcal{C}^{\infty}(\mathbb{R}^N)$ définie par :

$$\rho(y) = \begin{cases} e^{-1/(1-|y|^2)} & \text{si} & |y| < 1, \\ 0 & \text{si} & |y| > 1, \end{cases}$$

$$\rho_n(x) = C n^N \rho(nx), \quad \forall x \in \mathbb{R}^N$$

où $C=(\int_{-\infty}^{+\infty}\rho(y)dy)^{-1}$ de sorte que

$$\int_{-\infty}^{+\infty} \rho_n(x) dx = 1.$$

A tout $f \in L^p(\Omega)$, on associe son prolongement à \mathbb{R}^N par 0:

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si} \quad x \in \Omega \\ 0 & \text{si} \quad x \in \mathbb{R}^N \setminus \Omega \end{cases}$$

Alors: $\forall x \in \omega$,

$$|\rho_n \star \tilde{f}(x) - \tilde{f}(x)| \le \left(\int_{B(0,1/n)} \rho_n^{1-I/p} \rho_n^{1-I/p} \left(\int_{B(0,1/n)} \rho_n(y) |\tilde{f}(x-y) - \tilde{f}(x)|^p \right)^{1/p},$$

donc, si $n_0 > 0$ est assez grand pour avoir : $1/n_0 < \eta$,

$$\int_{\omega} |\rho_n \star \tilde{f}(x) - \tilde{f}(x)|^p dx \le \int_{\omega} \rho_n(y) \|\tau_y \tilde{f} - \tilde{f}\|_{L^p(\omega)}^p dy \le \varepsilon^p, \quad n \ge n_0,$$
(1)

2. Soit $n \geq n_0$. Soit $x, x' \in \omega$ et soit $f \in \mathcal{F}$. On a

$$|\rho_n \star \tilde{f}(x) - \rho_n \star \tilde{f}(x')| = \left| \int_{\mathbb{R}^N} \rho_n(y) \star \tilde{f}(x - y) dy - \int_{\mathbb{R}^N} \rho_n(y) \star \tilde{f}(x' - y) dy \right| \le$$

$$\le \int_{\mathbb{R}^N} \|\nabla \rho_n\|_{\infty} \|x - x'\| \|\tilde{f}(y)| dy \le$$

$$\le \|\nabla \rho_n\|_{\infty} \|x - x'\| \|\tilde{f}\|_{L^1(\omega)} \le C_n(\omega) \|x - x'\| \|\tilde{f}\|_{L^p(\omega)}$$

donc la famille $\rho_n \star \tilde{\mathcal{F}}|_{\omega} \in \mathcal{C}(\omega, \mathbb{R})$ est équicontinue.

3. Soit $x \in \omega$ et soit $n \geq n_0$. On a

$$|\rho_n \star \tilde{f}(x)| = \left| \int_{\mathbb{R}^N} \rho_n(x - y\tilde{f}(y)dy) \right| \le ||\tilde{f}||_{L^1(\omega)} \le C(\omega)||\tilde{f}||_{L^p(\omega)} \le C.$$

Donc le fermé

$$\overline{\{\rho_n \star \tilde{f}(x), \quad f \in \mathcal{F}\}}$$

est borné dans \mathbb{R} , donc un compact de \mathbb{R} .

- 4. La famille $\rho_n \star \tilde{\mathcal{F}}|_{\omega}$ vérifie les hypothèses du théorème d'Ascoli dans $\mathcal{C}(\Omega, \mathbb{R})$. donc $\rho_n \star \tilde{\mathcal{F}}|_{\omega}$ est un compact de $\mathcal{C}(\omega, \mathbb{R})$.
- 5. Soit $\varepsilon > 0$ et soit $n > n_0$. D'après (1),

$$|\rho_n \star \tilde{f} - \tilde{f}|_{L^p(\omega)} \le \varepsilon, \quad \forall f \in \mathcal{F}.$$

La famille $\rho_n \star \tilde{\mathcal{F}}|_{\omega}$ est relativement compacte dans $\mathcal{C}(\omega, \mathbb{R})$, donc $\rho_n \star \tilde{\mathcal{F}}|_{\omega}$ peut être recouvert par un nombre fini de boules de rayon ε , soit :

$$\rho_n \star \tilde{\mathcal{F}}|_{\omega} \subset \bigcup_{i=1}^N B(g_i, \varepsilon), \quad g_i \in \mathcal{C}(\omega, \mathbb{R}).$$

Soit $f \in \mathcal{F}$ et soit $\rho_n \star \tilde{f} \in B(g_i, \varepsilon)$. Alors

$$||f - g_i||_{L^p(\omega)} \le ||f - \rho_n \star \tilde{f}||_{L^p(\omega)} + ||\rho_n \star \tilde{f} - g_i||_{L^p(\omega)} \le 2\varepsilon$$

i.e. $\mathcal{F}|_{\omega} \subset \bigcup_{i=1}^{N} B(g_i, 2\varepsilon)$. On conclut à l'aide de la Proposition 2.3.

Corollaire

Soit $\mathcal{F} \subset L^p(\Omega)$ bornée vérifiant :

$$\forall \varepsilon > 0, \quad \forall \omega \subset\subset \Omega, \quad \exists \eta > 0 \quad \text{t.q.} \quad \eta < d(\omega, \mathbb{R}^N \setminus \Omega) \quad \text{et}$$

$$\forall |h| < \eta, \quad \|\tau_h f - f\|_{L^p(\omega)} < \varepsilon$$

et

$$\exists \omega \subset\subset \Omega \quad \text{t.q.} \quad ||f||_{L^p(\Omega\setminus\omega)} < \varepsilon, \quad \forall f\in\mathcal{F}.$$

Alors $\overline{\mathcal{F}}$ est un compact de $L^p(\Omega)$.

Démonstration

- 1. Soit $\varepsilon > 0$ et soit $\omega \subset\subset \Omega$ tel que $||f||_{L^p(\Omega\setminus\omega)} < \varepsilon$, $\forall f \in \mathcal{F}$. Soit $f \in \mathcal{F}$. D'après le Théorème de Fréchet-Kolmogorov, $\tilde{\mathcal{F}}|_{\omega}$ est un compact de $L^p(\omega)$.
- 2. Soit $\tilde{\mathcal{F}}|_{\omega} \subset \bigcup_{i=1^N} B(g_i, \varepsilon)$ un recouvrement fini de $\tilde{\mathcal{F}}|_{\omega}$ par des boules de $L^p(\omega)$ de rayon $\varepsilon > 0$, $g_i \in L^p(\omega)$. Soit $f \in \mathcal{F}$ et soit $\tilde{f}|_{\omega} \in B(g_i, \varepsilon)$. On a

$$||f - \tilde{g}_i||_{L^{(\Omega)}} \le ||\tilde{f} - g_i||_{L^{(\omega)}} + ||f||_{L^{(\Omega\setminus\omega)}} \le 2\varepsilon$$

i.e. : $\mathcal{F} \subset \bigcup_{i=1^N} B(g_i, 2\varepsilon)$ et $\overline{\mathcal{F}}$ est un compact de $L^p(\Omega)$ d'après la Proposition 2.3.

Remarque

1. Soit $\varphi \in \mathcal{C}_c(\mathbb{R})$. On pose :

$$\varphi_n(x) = \varphi(x+n), \quad \forall x \in \mathbb{R}.$$

Alors $\overline{\{\varphi_n, n \in \mathbb{N}\}}$ n'est pas compact dans $L^p(\mathbb{R}), \forall p \in [1, +\infty[$.

2. En effet, $\varphi_n \to 0$ dans \mathbb{R} pour la convergence simple, et

$$\|\varphi_n\|_{L^p(\mathbb{R})} = \|\varphi\|_{L^p(\mathbb{R})} > 0, \quad \forall n \ge 0.$$

3. La suite (φ_n) vérifie les hypothèses du théorèeme de Fréchet-Kolmogorov. En effet,

$$\|\varphi_n\|_{L^p(\mathbb{R})} = \|\varphi\|_{L^p(\mathbb{R})} \le C, \quad \forall n \ge 0$$
$$\|\tau_h \varphi_n - \varphi_n\|_{L^p(\mathbb{R})} = \|\tau_h \varphi - \varphi\|_{L^p(\mathbb{R})}, \quad \forall n \ge 0, \quad \forall h \in \mathbb{R}$$

et par continuité uniforme de φ sur son support compact :

$$\lim_{|h|\to 0} \|\tau_h \varphi - \varphi\|_{L^p(\mathbb{R})} = 0.$$

4. La suite (φ_n) ne vérifie pas l'hypothèse supplémentaire du Corollaire. En effet :

$$\|\varphi_n\|_{L^p(\mathbb{R}\setminus(-n/2,n/2))} = \|\varphi\|_{L^p(\mathbb{R})} > 0, \quad \forall n \ge 0$$

5. La réciproque du Corollaire est vraie.

3 Grands théorèmes d'analyse fonctionnelle

3.1 Théorème de Banach-Steinhauss

Lemme

Soit E un espace de Banach, F un espace vectoriel normé. Si $(f_i): E \to \mathbb{R}$ une famille de fonctions semi-continues inférieurement sur E telle que

$$\sup_{i \in I} f_i(x) < +\infty, \quad \forall x \in E.$$

Alors il existe un ouvert $U \subset E$ et une constante M > 0 telles que

$$\sup_{i \in I} f_i(x) \le M, \quad \forall x \in U.$$

Démonstration

1. On pose $f(x) = \sup_{i \in I} f_i(x), \, \forall x \in E$ et on définit :

$$U_n = \{ x \in E, \quad f(x) > n \}.$$

qui est un ouvert car f est semi-continue inférieurement. Si $\overline{U}_n = E$, $\forall n \in \mathbb{N}$, alors $E = \overline{\bigcap_{n \geq 0} U_n}$ par la propriété de Baire appliquée à E. Soit alors $x \in E$ et soit $x_k \to x$ avec $x_k \in \bigcap_{n \geq 0} U_n$. On a

$$f(x) \ge \limsup_{k \to +\infty} f(x_k) \ge n, \quad n \ge 0.$$

Ceci contredit $f(x) < +\infty$, $\forall x \in E$. Donc $\overline{U}_{n_0} \subset E$ et $\overline{U}_{n_0} \neq E$ pour un $n_0 \geq 0$. Alors $E \setminus \overline{U}_{n_0} \neq \emptyset$.

2. Soit $x_0 \in E \setminus \overline{U}_{n_0}$ et soit $B(x_0, \rho) \subset E \setminus \overline{U}_{n_0}$. On conclut avec $U = B(x_0, \rho)$ et $M = n_0$.

Théorème de Banach-Steinhauss

Soit E, F des espaces de Banach et soit $u_i \in \mathcal{L}_c(E, F), i \in \mathbb{N}$, avec

$$\sup_{i \in \mathbb{N}} \|u_i(x)\| < +\infty, \quad \forall x \in E.$$

Alors

$$\sup_{i\in\mathbb{N}}\|u_i\|<+\infty.$$

Démonstration

1. D'après le Lemme 3.1, il existe $U \subset E$ un ouvert et M > 0 avec

$$\forall x \in U, \quad \sup_{i \in \mathbb{N}} ||u_i(x)|| \le M.$$

2. Soit $x_0 \in U$ et soit $B(x_0, \rho) \subset U$. Alors, par linéarité des u_i

$$\forall x \in B(x_0, \rho), \quad ||u_i(x - x_0)|| \le ||u_i(x)|| + ||u_i(x_0)|| \le M + \sup_{i \ge 0} |u_i(x_0)|| =: M_0$$

i.e. :

$$\forall y \in B(0, \rho), \quad ||u_i(y)|| \le M_0$$

d'où:

$$||u_i|| \le \frac{M_0}{\rho}, qud \forall i \ge 0.$$

Corollaire

Soit E un espace de Banach, F un espace vectoriel normé. Soit $u_n \in \mathcal{L}_c(E, F)$ convergeant simplement vers u dans E. Alors $u \in \mathcal{L}_c(E, F)$.

3.2 Théorème de Stone-Weierstrass

Proposition

Soit X compact et soit $\mathcal{H} \subset \mathcal{C}(X,\mathbb{R})$ vérifiant :

- $-\forall u, v \in \mathcal{H}, \quad \sup(u, v) \in \mathcal{H} \quad \text{et} \quad \inf(u, v) \in \mathcal{H},$
- $\forall x, y \in X, \quad \forall \alpha, \beta \in \mathbb{R}, \quad \text{avec } \alpha = \beta \text{ si } x = y,$

 $\exists u \in \mathcal{H} \text{ t.q. } u(x) = \alpha \text{ et } u(y) = \beta,$

Alors $\overline{\mathcal{H}} = \mathbf{C}(X, \mathbb{R})$.

Démonstration

Soit $f \in \mathbf{C}(X,\mathbb{R})$ et soit $\varepsilon > 0$. Soit $x_0 \in X$. Alors, $\forall y \in X$, il existe $u_y \in \mathcal{H}$ tel que $u_y(x_0) = f(x_0)$ et $u_y(y) = f(y)$. Pour tout $y \in X$, on pose :

$$U_y = \{x \in X, \quad u_y(x) > f(x) - \varepsilon\}$$

qui est un ouvert contenant $y, \forall y \in X$. Par compacité de $X, X = \bigcup_{i=1}^{N} U_{y_i}$ pour une famille finie $y_1, \dots, y_N \in X$. On pose $u = \max u_{y_i}$. Soit $x \in X$, par exemple $x \in U_{y_i}$. Alors

$$u(x) \ge u_{y_i}(x) > f(x) - \varepsilon$$

i.e. : $u \in \mathcal{H}$ et $u > f - \varepsilon$. Comme u dépend du choix de x_0 , on pose $v_{x_0} := u$. Pour tout $y \in X$, soit

$$V_u = \{x \in X, \ v_u(x) < f(x) + \varepsilon\}$$

qui est un ouvert contenant $y, \forall y \in X$. Par compacité de $X: X = \bigcup_{j=1}^{M} V_{y_j}$ pour une famille finie $y_1, \dots, y_M \in X$. On pose $u = \min u_{y_i}$. Soit $x \in X$, par exemple $x \in V_{y_i}$. Alors

$$v(x) \le v_{y_i}(x) < f(x) + \varepsilon.$$

Ceci est vrai, $\forall x \in X$, donc $v \in \mathcal{H}$ et $f - \varepsilon \leq v \leq f + \varepsilon$.

Théorème de Stone-Weierstrass

Soit X compact et soit $\mathcal{H} \subset \mathcal{C}(X,\mathbb{R})$ vérifiant :

- \mathcal{H} contient les fonctions constantes,
- $\forall u, v \in \mathcal{H}, \quad u + v \in \mathcal{H} \quad \text{et} \quad uv \in \mathcal{H},$
- $\forall x \neq y \in X, \quad \exists u \in \mathcal{H} \quad \text{t.q. } u(x) \neq u(y),$

Alors $\overline{\mathcal{H}} = \mathcal{C}(X, \mathbb{R})$.

Lemme

Soit (p_n) la suite de polynômes définie par :

$$p_0 \equiv 0$$
 et $p_{n+1}(t) = p_n(t) + \frac{t - p_n(t)^2}{2}$.

Par récurrence sur n, on vérifie que

$$0 \le p_n(t) \le \sqrt{t}, \quad \forall t \in [0, 1].$$

car

$$p_{n+1}(t) - \sqrt{t} = \frac{1}{2}(p_n(t) - \sqrt{t})\left(1 - \sqrt{t} + 1 - p_n(t)\right) \le \frac{1}{2}(p_n(t) - \sqrt{t})$$

On en déduit que

$$0 \le p_n(t) \le p_{n+1}(t) \le \sqrt{t}, \quad \forall t \in [0, 1],$$

puis que (p_n) décroît simplement vers \sqrt{t} . D'après le théorème de Dini, la convergence est uniforme.

Démonstration

1. Soit $\mathcal{P}(X)$ l'ensemble des polynômes de la variable X et soit

$$\mathcal{P}(\mathcal{H}) = \{ p(u), \ u \in \mathcal{H} \}$$

$$\mathcal{P}(\overline{\mathcal{H}}) = \{ p(u), \ u \in \overline{\mathcal{H}} \}$$

Les deux premières hypothèses sur \mathcal{H} entraînent que $\mathcal{P}(\mathcal{H}) \subset \mathcal{H}$ et $\mathcal{P}(\overline{\mathcal{H}}) \subset \overline{\mathcal{H}}$.

2. Soit $u \in \mathcal{H}$ et soit $\varepsilon > 0$. Soit n > 0 tel que

$$|p_n(t) - \sqrt{t}| \le \varepsilon, \quad \forall t \in [0, 1].$$

Comme $|u| \leq M$ pour une constante M>0, quitte à remplacer u par $\frac{u}{M} \in \mathcal{H}$, on peut supposer $|u| \leq 1$. Alors

$$|p_n(u^2) - |u|| \le \varepsilon$$
 dans $[0, 1]$

avec $p_n(u^2) \in \mathcal{H}$. Donc $|u| \in \overline{\mathcal{H}}$. Il en résulte que :

$$\sup(u,v) \in \overline{\mathcal{H}}, \quad \inf(u,v) \in \overline{\mathcal{H}}, \quad \forall u,v \in \mathcal{H}.$$

3. Soit $x \neq y \in X$ et soit $\alpha, \beta \in \mathbb{R}$. Soit $u \in \mathcal{H}$ tel que $u(x) \neq u(y)$. On pose

$$v = \alpha + (\beta - \alpha) \left(\frac{u - u(y)}{u(x) - u(y)} \right).$$

Alors $v \in \mathcal{H}$ et $v(x) = \alpha$, $v(y) = \beta$.

4. De la Proposition 3.2 on déduit que $\overline{\mathcal{H}} = \mathcal{C}(X, \mathbb{R})$.

Corollaires

- 1. Toute aplication $f \in \mathcal{C}(X,\mathbb{R})$ avec X compact est limite uniforme dans X d'une suite de polynômes.
- 2. Si f est continue et périodique sur \mathbb{R} , alors elle est limite uniforme d'une suite de polynômes trigonométriques.

3.3 Théorème de Banach

Théorème

Soit V, F deux espaces de Hilbert et soit $A \in \mathcal{L}(V, F)$. On suppose que A est surjectif. Alors il existe c > 0 tel que

$$\forall f \in F, \quad \exists x \in V \quad \text{t.q.} \quad f = Ax \quad \text{et} \quad ||x|| \le c^{-1} ||f||.$$

Démonstration

- 1. Les deux propriétés suivantes sont équivalentes :
 - a) Il existe c > 0 tel que

$$\forall f \in F, \quad \exists x \in V \quad \text{t.q.} \quad f = Ax \quad \text{et} \quad \|x\| \le c^{-1} \|f\|.$$

- b) $\forall \varepsilon > 0$, il existe $\eta > 0$ t.q. $B_F(0, \eta) \subset AB_V(0, \varepsilon)$ où les boules $B_F(0, \eta)$ et $B_V(0, \varepsilon)$ sont ouvertes.
- 2. \Rightarrow Soit $\varepsilon > 0$, $\eta > 0$ et soit $f \in B_F(0, \eta)$, $x \in V$ tel que f = Ax et $||x|| \le c^{-1}||f||$. Alors $||x|| < c^{-1}\eta$ et il suffit de prendre $\eta < c\varepsilon$.
- 3. \Leftarrow Soit $f \in F$ et soit $\varepsilon > 0$, $\eta > 0$ t.q. $B_F(0,\eta) \subset AB_V(0,\varepsilon)$. Soit $0 < \eta' < \eta$. Alors $\frac{\eta'}{\|f\|} f \in B_F(0,\eta)$ et il existe $x \in B_V(0,\varepsilon)$ t.q. $\frac{\eta'}{\|f\|} f = Ax$, i.e.

$$f = \frac{\|f\|}{\eta'} Ax$$
 avec $\frac{\|f\|}{\eta'} \|x\| < \frac{\|f\|}{\eta'} \varepsilon$.

On conclut en prenant $c = \frac{\eta'}{\varepsilon}$.

4. On admet temporairement que $\forall \varepsilon > 0, \forall \eta > 0$,

$$2B_F(0,\eta) \subset \overline{AB_V(\varepsilon)} \Rightarrow B_F(0,\eta) \subset AB_V(\varepsilon).$$

5. Soit $\varepsilon > 0$. On a $V = \bigcup_{n \geq 0} nB_V(0,\varepsilon)$ et comme A est surjectif : $F \subset \bigcup_{n \geq 0} \overline{nAB_V(0,\varepsilon)}$ où chaque $X_n = \overline{nAB_V(0,\varepsilon)}$ est fermé par définition. D'après la propriété de Baire, $\exists n > 0$ t.q. $\mathring{X}_n \neq \emptyset$. Soit alors $x_0 \in \mathring{X}_n$ et soit $\eta > 0$ t.q. $B_V(x_0,\eta) \subset X_n$. Alors $B_V(0,\eta) \subset -x_0 + X_n \subset 2X_n = 2n\overline{AB_V(0,\varepsilon)}$, i.e. : $2B_V\left(0,\frac{\eta}{4n}\right) \subset \overline{AB_V(0,\varepsilon)}$.

Lemme préliminaire

 $\forall \varepsilon > 0, \, \forall \eta > 0,$

$$2B_F(0,\eta) \subset \overline{AB_V(\varepsilon)} \Rightarrow B_F(0,\eta) \subset AB_V(\varepsilon).$$

Démonstration

1. Soit $\varepsilon > 0$ et soit $\eta > 0$ t.q. :

$$2B_F(0,\eta) \subset \overline{AB_V(\varepsilon)}$$
.

Soit $f \in B_F(0,\eta)$. Alors $2f \in \overline{AB_V(\varepsilon)}$ et il existe $z_0 \in AB_V(\varepsilon)$ t.q. : $\|2f - z_0\| < \eta$. De même, en remplaçant f par $2f - z_0$, on montre qu'il existe $z_1 \in AB_V(\varepsilon)$ t.q. $\|2(2f - z_0) - z_1\| < \eta$, i.e. : $\|2f - z_0 - \frac{z_1}{\varepsilon}\| < \frac{\eta}{2}$. Par récurrence sur n, on construit une suite $(z_n) \in AB_V(\varepsilon)$ t.q.

$$||2f - \sum_{k=0}^{n} \frac{z_k}{2^k}|| < \frac{\eta}{2^n}.$$

Pour tout $k \geq 0$, soit $y_k \in B_V(\varepsilon)$ t.q. : $z_k = Ay_k$. On pose :

$$x_n = \frac{1}{2} \sum_{k=0}^n \frac{y_k}{2^k}, \quad \forall n \ge 0.$$

Alors: $\forall n, p \geq 0$,

$$||x_{n+p} - x_n|| < \frac{\varepsilon}{2} \sum_{k=n+1}^{n+p} \frac{1}{2^k} = \frac{\varepsilon}{2^n} \left(1 - \frac{1}{2^{p+1}}\right)$$

d'où on déduit que (x_n) est de Cauchy dans V complet, donc convergente. Soit $x_n \to x_* \in V$.

2. On a : $\forall n \geq 0$,

$$||x_n|| < \frac{\varepsilon}{2} \sum_{k=0}^n \frac{1}{2^k} = \varepsilon \left(1 - \frac{1}{2^{n+1}}\right) < \varepsilon$$

donc, quand $n \to +\infty : ||x_*|| \le \varepsilon$.

3. Par construction :

$$||f - Ax_n|| \le \frac{\eta}{2^n}, \quad \forall n \ge 0$$

donc, quad $n \to +\infty$: $f = Ax_*$ avec $||x_*|| \le \varepsilon$.

4. Le raisonnement qui précède est vrai si on remplace f par λf avec $\lambda > 1$ t.q. $||f| < \lambda ||f|| < \eta$. Autrement dit, pour un tel $\lambda > 1$:

$$\lambda f = Ax_*$$
 avec $||x_*|| \le \varepsilon$.

On en déduit que $f = \frac{1}{\lambda} Ax$ avec $\frac{1}{\lambda} x \in B_V(0, \varepsilon)$.

Corollaires

- 1. Si $A \in \mathcal{L}_c(V, F)$ est bijectif, alors $A^{-1} \in \mathcal{L}_c(F, V)$.
- 2. Soit V, F deux espaces de Hilbert. Alors $A \in \mathcal{L}(V, F)$ est continue si et seulement si son graphe est est fermé, i.e. si et seulement si : pour toute suite $(x_n) \in V$ convergeant simplement vers 0 dans V, si Ax_n converge simplement vers $f \in F$, alors f = 0.

Démonstration

- 1. Si $A \in \mathcal{L}_c(V, F)$ est bijectif, alors on applique le théorème de Banach à A^{-1} .
- 2. \Leftarrow Par hypothèse, le graphe $G(A) = \{(x,Ax), x \in V\} \subset V \times F$ est fermé dans $V \times F$ qui est un espace de Hilbert, donc G(A) est complet, donc un espace de Hilbert. La projection canonique $p: G(A) \to V$ est linéaire, continue et bijective, donc son inverse p^{-1} est continue. Soit $\pi: G(A) \to F$ la projection de G(A) sur F. Alors $A = \pi \circ p^{-1}$ est continue comme composée d'applications continues.

Bibliographie

[1] Brezis, H. Analyse fonctionnelle : théorie et applications, Masson, Paris, 1983.

- [2] Dixmier, J., Topologie Générale, P.U.F., Paris, 1981.
- [3] Aubin, J.P., Analyse Fonctionnelle Appliquée, tomes 1 et 2, P.U.F., Paris, 1987.