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SIMPLICITY OF A4,

KEITH CONRAD

1. INTRODUCTION

A finite group is called simple when it is nontrivial and its only normal subgroups are
the trivial subgroup and the whole group.

For instance, a finite group of prime size is simple, since it in fact has no non-trivial
proper subgroups at all (normal or not). A finite abelian group G not of prime size, is not
simple: let p be a prime factor of |G|, so G contains a subgroup of order p, which is a normal
since G is abelian and is proper since |G| > p. Thus, the abelian finite simple groups are
the groups of prime size.

When n > 3 the group S, is not simple because it has a nontrivial normal subgroup A,.
But the groups A,, are simple, provided n > 5.

Theorem 1.1 (C. Jordan, 1875). For n > 5, the group A, is simple.

The restriction n > 5 is optimal, since A4 is not simple: it has a normal subgroup of
size 4, namely {(1), (12)(34), (13)(24), (14)(23)}. The group As is simple, since it has size
3, and the groups A; and A, are trivial.

We will give five proofs of Theorem 1.1. Section 2 includes some preparatory material
and later sections give the proofs of Theorem 1.1. In the final section, we give a quick
application of the simplicity of alternating groups and give references for further proofs not
treated here.

2. PRELIMINARIES

We give two lemmas about alternating groups A, for n > 5 and then two results on
symmetric groups S, for n > 5.

Lemma 2.1. For n > 3, A, is generated by 3-cycles. For n > 5, A, is generated by
permutations of type (2,2).

Proof. That the 3-cycles generate A, for n > 3 has been seen earlier in the course. To show
permutations of type (2,2) generate A,, for n > 5, it suffices to write any 3-cycle (abc) in
terms of such permutations. Pick d,e & {a,b, c}. Then note

(abc) = (ab)(de)(de)(bc).
O

The 3-cycles in S, are all conjugate in Sy, since permutations of the same cycle type in
Sy are conjugate. Are 3-cycles conjugate in 4,7 Not when n = 4: (123) and (132) are not
conjugate in Ay. But for n > 5 we do have conjugacy in A,.

Lemma 2.2. Forn > 5, any two 3-cycles in A, are conjugate in A,.
1



2 KEITH CONRAD

Proof. We show every 3-cycle in A,, is conjugate within A, to (123). Let o be a 3-cycle in
Ay,. Tt can be conjugated to (123) in Sp:

(123) = mon !
for some 7 € S,,. If 7 € A,, we're done. Otherwise, let 7' = (45)7, so ' € A,, and
mon’ ™t = (45)mor 1 (45) = (45)(123)(45) = (123).
g
Example 2.3. The 3-cycles (123) and (132) are not conjugate in A4. But in A5 we have
(132) = w(123)7 !
for m = (45)(12) € As.

Most proofs of the simplicity of the groups A,, are based on Lemmas 2.1 and 2.2. The
basic argument is this: show any non-trivial normal subgroup N <1 A,, contains a 3-cycle,
so N contains every 3-cycle by Lemma 2.2, and therefore NV is A, by Lemma 2.1.

The next lemma will be used in our fifth proof of the simplicity of alternating groups.

Lemma 2.4. For n > 5, the only nontrivial proper normal subgroup of S, is A,. In
particular, the only subgroup of Sy, with index 2 is A,

Proof. The last statement follows from the first since any subgroup of index 2 is normal.
Let N < S, with N # {(1)}. We will show A, C N, so N = A, or S,.
Pick 0 € N with o # (1). That means there is an i with o(¢) # i. Pick j € {1,2,...,n}
so j#iand j # o(i). Let 7 = (ij). Then

oro it = (a(i) 0(4))(ij)-
Since o (i) # ¢ or j and o(i) # o(j) (why?), the 2-cycles (o(i) o(j)) and (ij) are unequal,
so their product is not the identity. That shows o7 # T0.

Since N <1 S,,, oro~ 77! lies in N. By construction, o (i) # i or j. If o(j) # 4 or j, then
(o(i) 0(5))(i7) has type (2,2). If 0(j) =i or j, (o(i) o(j))(i5) is a 3-cycle. Thus N contains
a permutation of type (2,2) or a 3-cycle. Since N <1.S,,, N contains all permutations of type
(2,2) or all 3-cycles. In either case, this shows (by Lemma 2.1) that N D A,,. O

Remark 2.5. There is an analogue of Lemma 2.4 for the “countable” symmetric group S
consisting of all permutations of {1,2,3,...}. A theorem of Schreier and Ulam (1933) says
the only nontrivial proper normal subgroups of S are Up>1.S, and U,>1 A, which are the
subgroup of permutations fixing all but a finite number of terms and its subgroup of even
permutations.

Remark 2.6. From Lemma 2.4, any homomorphic image of S, which is not an isomorphism
has size 1 or 2. In particular, there is no surjective homomorphism S,, — Z/(m) for m > 2.

Theorem 2.7. For n > 5, any proper subgroup of S, other than A, has index at least n.
Moreover, any subgroup of index n is isomorphic to Sp_1.

Proof. Let H be a proper subgroup of S,, other than A,, and let m > 1 be the index of H
in S,. We want to show m > n. Assume m < n. The left multiplication action of S,, on
Sp/H gives a group homomorphism

p: Sy, — Sym(S,/H) = S,,.
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By hypothesis, m < n, so ¢ is not injective. Let K be the kernel of ¢, so K C H and K is
non-trivial. Since K < S, Lemma 2.4 says K = A,, or S,. Since K C H, we get H = A,
or Sy, which contradicts our initial assumption about H. Therefore m > n.

Now let H be a subgroup of S,, with index n. Consider the left multiplication action
of S, on S,,/H. This is a homomorphism ¢: S,, — Sym(S,,/H). Since S,/H has size n,
Sym(S,,/H) is isomorphic to S,,. The kernel of ¢ is a normal subgroup of S;, which lies in H
(why?). Therefore the kernel has index at least n in S,,. Since the only normal subgroups
of S, are 1, A,, and S,,, the kernel of £ is trivial, so ¢ is an isomorphism. What is the image
¢(H) in Sym(S,,/H)? Since gH = H if and only if g € H, ¢(H ) is the group of permutations
of S,,/H which fixes the “point” H in S,,/H. The subgroup fixing a point in a symmetric
group isomorphic to S, is isomorphic to S,_;. Therefore H = ¢(H) = S,,_. O

Theorem 2.7 is false for n = 4: 54 contains the dihedral group of size 8 as a subgroup of
index 3. An analogue of Theorem 2.7 for alternating groups will be given in Section 8; its
proof uses the simplicity of alternating groups.

Corollary 2.8. Let F be a field. If f € F[X1,...,X,] and n > 5, the number of different
polynomials we get from f by permuting its variables is either 1, 2, or at least n.

Proof. Letting S, act on F[Xy,...,X,] by permutations of the variables, the polynomials
we get by permuting the variables of f is the S,-orbit of f. The size of this orbit is [S,, : H],
where H = Staby = {0 € S,, : of = f}. By Theorem 2.7, this index is either 1, 2, or at
least n. O

3. FIRST PROOF
Our first proof of Theorem 1.1 is based on the one in [2, pp. 149-150].
We begin by showing As is simple.
Theorem 3.1. The group As is simple.
Proof. We want to show the only normal subgroups of As are {(1)} and As. This will be
done in two ways.

Our first method involves counting the sizes of the conjugacy classes. There are 5 conju-
gacy classes in As, with representatives and sizes as indicated in the following table.

Rep. | (1) | (12345) [ (21345) | (12)(34) | (123)
Size | 1 12 12 15 20

If A5 has a normal subgroup N, then N is a union of conjugacy classes — including {(1)} —
whose total size divides 60. However, no sum of the above numbers which includes 1 is a
factor of 60 except for 1 and 60. Therefore N is trivial or As.

For the second proof, let N < A5 with |N| > 1. We will show N contains a 3-cycle. It
follows that N = A,, by Lemmas 2.1 and 2.2.

Pick 0 € N with o # (1). The cycle structure of o is (abc), (ab)(cd), or (abede), where
different letters represent different numbers. Since we want to show N contains a 3-cycle,
we may suppose ¢ has the second or third cycle type. In the second case, N contains

((abe)(ab)(cd)(abe) 1) (ab)(cd) = (be)(cd)(ab)(cd) = (aeb).
In the third case, N contains

((abe)(abede) (abe) ™) (abede) ™! = (adebe)(aedeb) = (abd).
Therefore N contains a 3-cycle, so N = As. g
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Lemma 3.2. Whenn > 5, any o # (1) in A, has a conjugate o’ # o such that o (i) = o’ (i)
for some i.

For example, if o = (12345) in A5 then o’ = (345)0(345)~! = (12453) has the same value
at 7 =1 as o does.

Proof. Let o be a non-identity element of A,. Let r be the longest length of a disjoint cycle
in 0. Relabelling, we may write

where (12...r) and 7 are disjoint.

If > 3, let 7 = (345) and ¢’ = 7or~!. Then o(1) = 2,0/(1) = 2,0(2) = 3, and
0'(2) = 4. Thus ¢’ # o and both take the same value at 1.

If » = 2, then o is a product of disjoint transpositions. If there are at least 3 disjoint
transpositions involved, then n > 6 and we can write o = (12)(34)(56)(...) after relabelling.
Let 7 = (12)(35) and ¢/ = 7o7~1. Then o(1) = 2,0'(1) = 2,0(3) = 4, and ¢/(3) = 6. Again,
we see 0’ # o and o and ¢’ have the same value at 1.

If r = 2 and o is a product of 2 disjoint transpositions, write o = (12)(34) after relabelling.
Let 7 = (132) and ¢’ = 707! = (13)(24). Then o’ # o and they both fix 5. O

Now we prove Theorem 1.1.

Proof. We may suppose n > 6, by Theorem 3.1. For 1 < ¢ < n, let A,, act in the natural
way on {1,2,...,n} and let H; C A, be the subgroup fixing i, so H; = A,,_1. By induction,
each H; is simple. Note each H; contains a 3-cycle (build out of 3 numbers other than 7).

Let N <A, be a nontrivial normal subgroup. We want to show N = A,,. Pick 0 € N with
o # {(1)}. By Lemma 3.2, there is a conjugate o’ of ¢ such that ¢’ # o and o(i) = o’(4)
for some 4. Since N is normal in A,, 0’ € N. Then o~ !¢’ is a non-identity element of N
which fixes i, so N N H; is a non-trivial subgroup of H;. It is also a normal subgroup of H;
since N <1 A,. Since H; is simple, N N H; = H;. Therefore H; C N. Since H; contains a
3-cycle, N contains a 3-cycle and we are done.

Alternatively, we can show N = A,, when N N H; is non-trivial for some i as follows. As
before, since N N H; is a non-trivial normal subgroup of H;, H; C N. Without referring to
3-cycles, we instead note that the different H;’s are conjugate subgroups of A,: o H;o ™! =
H,; for 0 € A, Since N < Ay, and N contains H;, N contains every H,;) for all o € Aj.
Since o (i) can be any element of A,, as o varies in A,,, N contains every H;. Any permutation
of type (2,2) is in some H; since n > 5, so N contains all permutations of type (2,2). Every
permutation in A, is a product of permutations of type (2,2), so N D A,. Therefore
N = A,. O

4. SECOND PROOF

Our next proof is taken from [6, p. 108]. It does not use induction on n, but we do need
to know Ag is simple at the start.

Theorem 4.1. The group Ag is simple.

Proof. We follow the first method of proof of Theorem 3.1. Here is the table of conjugacy
classes in Ag.

Rep. | (1) [ (123) | (123)(456) | (12)(34) | (12345) | (23456) | (1234)(56)
Size | 1 | 40 40 45 72 72 90
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A tedious check shows no sum of these sizes, which includes 1, is a factor of 6!/2 except for
the sum of all the terms. Therefore the only non-trivial normal subgroup of Ag is Ag. U

Now we prove the simplicity of A,, for larger n by reducing directly to the case of Ag.

Proof. Since As and Ag are known to be simple by Theorems 3.1 and 4.1, pick n > 7 and
let N <0 A, be a non-trivial subgroup. We will show N contains a 3-cycle.

Let o be a non-identity element of N. It moves some number. By relabelling, we may
suppose o(1) # 1. Let 7 = (ijk), where 4,j,k are not 1 and o(1) € {i,j,k}. Then
ror Y1) = 7(0(1)) # o(1),s0 ToT 1 # 0. Let o = o7 1o, s0 o # (1). Writing

o= (ror )oY,

we see ¢ € N. Now write
p=r(0r7l07Y),

1 1

Since 77! is a 3-cycle, o7 '~ is also a 3-cycle. Therefore ¢ is a product of two 3-cycles, so
 moves at most 6 numbers in {1,2,...,n}. Let H be the copy of Ag inside 4,, corresponding
to the even permutations of those 6 numbers (possibly augmented to 6 arbitrarily if in fact
¢ moves fewer numbers). Then N N H is non-trivial (it contains ¢) and it is a normal
subgroup of H. Since H = Ag, which is simple, NN H = H. Thus H C N, so N contains
a 3-cycle. O

5. THIRD PROOF

Our next proof is by induction, and uses conjugacy classes instead of Lemma 3.2. It is
based on [9, §2.3].

Lemma 5.1. If n > 6 then every non-trivial conjugacy class in S, and A, has at least n
elements.

The lower bound n in Lemma 5.1 is actually quite weak as n grows. But it shows that
the size of each non-trivial conjugacy class in S,, and A, grows with n.

Proof. For n > 6, pick o € S, with o # (1). We want to look at the conjugacy class of ¢ in
Sn, and if o € A,, we also want to look at the conjugacy class of ¢ in A,, and our goal in
both cases is to find at least n elements in the conjugacy class.

Case 1: The disjoint cycle decomposition of o includes a cycle with length greater than
2. Without loss of generality, o = (123...)....

For 3 < k < n, fix a choice of £ ¢ {1,2,3,k} (which is possible since n > 5) and let
ag = (2k0) and Bi, = (3kf). Then aroa, ! has the effect 1 — 1 — 2 — k and ByoB; ' has
the effect 1 =1 — 2 — 2 and 2 > 2 — 3 — k. This tells us that the conjugates

1 -1 -1 -1
Q3005 ..., 000, 8308 ..., Bhof,

are all different from each other: the conjugates by the a’s have different effects on 1, the
conjugates by the 3’s have different effects on 2, and a conjugate by an « is not a conjugate
by a [ since they have different effects on 1. Since these conjugates are different, the number
of conjugates of o is at least 2(n — 2) > n. Because o and S are 3-cycles, if o € A,, then
these conjugates are in the A,-conjugacy class of o.

Case 2: The disjoint cycle decomposition of o only has cycles with length 1 or 2. Therefore
without loss of generality o is a transposition or a product of at least 2 disjoint transposi-
tions.
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If o is a transposition, then its S,-conjugacy class is the set of all transpositions (ij)
where 1 < 7 < j < n, and the number of these permutations is (g) = ”27_”, which is greater
than n for n > 6.

If o is a product of at least 2 disjoint transpositions, then without loss of generality
o = (12)(34) ..., where the terms in ... don’t involve 1, 2, 3, or 4.

For 5 < k < n, let a, = (12)(3k), Bx = (13)(2k), and 4, = (1k)(23). Then ayoa; ' has
the effect

1522122 2—=51—=2=1, k—=3—=>4—4,
ﬁkaﬁgl has the effect

1-3—24—24, 3—-122—=2k k—2—1-—23,
and yroy, ! has the effect
253—-4—-4, 352—-1—-k k—>1—2—3.

The conjugates of o by the o’s are different from each other since they take different elements
to 4, the conjugates of o by the §’s are different from each other since they take different
elements to 3, and the conjugates of o by the «’s are different from each other since they
take different elements to 3. Conjugates of o by an a and a § are different since they send
1 to different places, conjugates of o by an a and a ~ are different since they send 2 to
different places, and conjugates of ¢ by a § and a ~ are different since they send different
elements to 4 (1 for the 8’s and 2 for the «’s). In total the number of conjugates of o we
have written down (which are all conjugates by 3-cycles, hence they are conjugates in A,
ifoeA,)is3(n—4),and 3(n—4) >nifn > 6. O

Now we prove Theorem 1.1.

Proof. We argue by induction on n, the case n = 5 having already been settled by Theorem
3.1. Say n > 6. Let N < A,, with N # {(1)}. Since N is normal and non-trivial, it contains
non-identity conjugacy classes in A,,. By Lemma 5.1, any non-identity conjugacy class in
A,, has size at least n when n > 6. Therefore, by counting the trivial conjugacy class and
a non-trivial conjugacy class in N, we see |[N| > n + 1.

Using a wholly different argument, we now show that |N| < n if N # A,,, which will be
a contradiction. Pick 1 < i < n. Let H; C A, be the subgroup fixing 7, so H; £ A,,_1. In
particular, H; is a simple group by induction. Notice each H; contains a 3-cycle.

The intersection N N H; is a normal subgroup of H;, so simplicity of H; implies N N H;
is either {(1)} or H;. If NN H; = H; for some i, then H; C N. Since H; contains a 3-cycle,
N does as well, so N = A,, by Lemmas 2.1 and 2.2. (This part resembles part of our first
proof of simplicity of A,, but we will now use Lemma 5.1 instead of Lemma 3.2 to show
the possibility that N N H; = {(1)} for all ¢ is absurd.)

Suppose N # A,,. Then, by the previous paragraph, N N H; = {(1)} for all i. Therefore
each o # (1) in N acts on {1,2,...,n} without fixed points (otherwise ¢ would be a non-
identity element in some N N H;). That implies each o # (1) in N is completely determined
by the value o(1): if 7 # (1) is in N and o(1) = 7(1), then 7! € N fixes 1, so o7~ ! is
the identity, so o = 7.

There are only n — 1 possible values for o(1) € {2,3,...,n}, so N —{(1)} has size at
most n — 1, hence |N| < n. We already saw from Lemma 5.1 that |[N| > n + 1, so we have
a contradiction. g
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6. FOURTH PROOF

Our next proof, based on [3, p. 50|, is very computational.

Proof. Let N <1 A,, be a non-trivial normal subgroup. We will show N contains a 3-cycle.
Pick 0 € N, 0 # (1). Write
0 =TT Tk,
where the 7;’s are disjoint cycles. In particular, they commute, so we can relabel them at
our convenience. Eliminate any 1-cycles from the product.
Case 1: Some 7; has length at least 4. Relabelling, we can write

T = (12 7)

with 7 > 4. Let ¢ = (123). Then pop~! € N and
popt = pmelmy.-m,
= <p7r1g0717r1_10
= (123)(123---7)(132)(r---21)o
= (124)0,

so (124) = pop~ o™t € N.
Case 2: Each 7; has length < 3, and at least two have length 3 (so n > 6). Without loss
of generality, m = (123) and my = (456). Let ¢ = (124). Then

pop Tt = pmmp g,
= @ﬂlﬂggo_lﬂglwfla
= (124)(123)(456)(142)(465)(132)0

(12534)0,
so pop~to~! = (12534) € N. Now run through Case 1 with this 5-cycle to find a 3-cycle
in N.
Case 3: Exactly one m; has length 3, and the rest have length < 2. Without loss of
generality, m; = (123) and the other ;’s are 2-cycles. Then 02 = 77 is in N, and 77 = (132).
Case 4: All 7;’s are 2-cycles, so necessarily k > 1. Write m; = (12) and 7w = (34). Let
¢ = (123). Then
popT! = pmmp lmye
= wwlﬂgw_lﬂglﬂfla
= (123)(12)(34)(132)(34)(12)c
— (13)(24)0,
SO
popto™! = (13)(24) € N.
Let ¢ = (135). Then

(13)(24)p(13) (24" = (13)(24)(135)(13)(24)(153)
= (13)(135)(13)(153)
= (139),

so N contains a 3-cycle. g
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7. FIFTH PROOF

Our final proof is taken from [8, p. 295].

Let N < A, with N not {(1)} or 4,,. We will study N as a subgroup of S,,. By Lemma
2.4, N is not a normal subgroup of S,,. This means the normalizer of N inside S, is a
proper subgroup, which contains A, so

(7.1) A, = Ng, (N).

For any transposition 7 in Sy, 7 € Ng,(N) by (7.1), so TN7~! # N. Since N <1 A,, and
TN71~1is a subgroup of A, the product set N - TN7~! is a subgroup of A,,. We have the
chain of inclusions

NNTNr ' CNCN-TN77' C 4,,

where the first and second are strict.
We will now show, for any transposition 7 in S, that

(7.2) Nn7Ntt<a8, N-7N7 18,

The proof of (7.2) is a bit tedious , so first let’s see why (7.2) leads to a contradiction.
It follows from (7.2) and Lemma 2.4 that

(7.3) Nn7Nt'={(1)}, N-7N7'=A4,

for any transposition 7 in S,. By (7.3), |4,| = |N| - |[rN77!| = |[N|?, so n! = 2|N|%. This
tells us |N| must be even, so N has an element, say o, of order 2. Then o is a product of
disjoint 2-cycles. There is a transposition p in S,, which commutes with o: just take for p
one of the transpositions in the disjoint cycle decomposition of ¢. Then

oc=pop te NNnpNp L.

From (7.3), using p for the arbitrary 7 there, NNpN p~! is trivial, so we have a contradiction.

(As another way of reaching a contradiction from the equation n! = 2|N|?, we can use
Bertrand’s postulate — proved by Chebyshev — that there is always a prime strictly between
m and 2m for any m > 1. That means, taking m = n!/4, the ratio n!/2 can’t be a perfect
square.)

It remains to check the two conditions in (7.2). In both cases, we show the subgroups
are normalized by A, and by 7, so the normalizer contains (A, ) = S,.

First consider N N 7N7~1. It is clearly normalized by 7. Now pick any m € A,. Then
aN7~! = N since N <1 A, and

(7.4) r(rNt Yt = r(r7nr)N(w a7 tr)rt = 7 N7 1
since 77177 € A,,. Therefore
r(NNTNt Yt =zNrtnarNr It = NnrN7t71,

so A,, normalizes N N 7N7~ L.
Now we look at N - 7TN7~!. Pick an element of this product, say

o= 017027'_1,
where 01,09 € N. Then, since N <1 A,
o1t = 1017097 2 = 101702 € TNT ' - N =N 7Nt}

which shows 7 normalizes N - 7N7— L.
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Now pick any 7 € A,,. To see m normalizes N - TN7~!, pick o as before. Then

ot = oyt w(rogr Dot

1

The first factor o7~ ! is in N since N < A,. The second factor is in 77 N7~ 1771, which

equals TN7~! by (7.4).

8. CONCLUDING REMARKS

The standard counterexample to the converse of Lagrange’s theorem is Ay: it has size 12
but no subgroup of index 2. For n > 5, the groups A,, also have no subgroup of index 2,
since any index-2 subgroup of a group is normal and A, is simple.

In fact, something stronger is true.

Corollary 8.1. For n > 5, any proper subgroup of A, has index at least n.
This is an analogue of Theorem 2.7.

Proof. Let H be a proper subgroup of A,,, with index m > 1. Consider the left multiplication
action of A, on A,,/H. This gives a group homomorphism

p: Ay — Sym(A,/H) = Sp,.

Let K be the kernel of ¢, so K C H (why?) and K < A,,. By simplicity of A4,,, K is trivial.
Therefore A,, injects into Sy, so (n!/2) | m!, which implies n < m. O

The lower bound of n is sharp since [A4,, : A,—1] = n. Corollary 8.1 is false for n = 4: Ay
has a subgroup of index 3.

Remark 8.2. What the proof of Corollary 8.1 shows more generally is that if G is a finite
simple group and H is a subgroup with index m > 1, then there is an embedding of G into
Sm, so |G| | m!l. With G fixed, this divisibility relation puts a lower bound on the index of
any proper subgroup of G.

A reader who wants to see more proofs that A, is simple for n > 5 can look at [4, pp. 247-
248] or [5, pp. 32-33] for another way of showing a non-trivial normal subgroup contains a
3-cycle, or at [1, §1.7] or 7, pp. 295-296] for a proof based on the theory of highly transitive
permutation groups.
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